enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Faraday paradox - Wikipedia

    en.wikipedia.org/wiki/Faraday_paradox

    The Faraday paradox or Faraday's paradox is any experiment in which Michael Faraday's law of electromagnetic induction appears to predict an incorrect result. The paradoxes fall into two classes: Faraday's law appears to predict that there will be zero electromotive force (EMF) but there is a non-zero EMF.

  3. Hering's Paradox - Wikipedia

    en.wikipedia.org/wiki/Hering's_Paradox

    In his study on the subject, Carl Hering concluded in 1908 that the usual statement of Faraday's Law (at the turn of the century) was imperfect and that it required to be modified in order to become universal. [1] Since then, Hering's paradox has been used repeatedly in physics didactics to demonstrate the application of Faraday's Law of ...

  4. Faraday paradox (electrochemistry) - Wikipedia

    en.wikipedia.org/wiki/Faraday_paradox...

    The Faraday paradox was a once inexplicable aspect of the reaction between nitric acid and steel. Around 1830, the English scientist Michael Faraday found that diluted nitric acid would attack steel, but concentrated nitric acid would not. [1] The attempt to explain this discovery led to advances in electrochemistry.

  5. List of paradoxes - Wikipedia

    en.wikipedia.org/wiki/List_of_paradoxes

    Download QR code; Print/export ... Paradox of free choice: ... Faraday paradox: An apparent violation of Faraday's law of electromagnetic induction.

  6. Faraday's law of induction - Wikipedia

    en.wikipedia.org/wiki/Faraday's_law_of_induction

    Faraday's law of induction (or simply Faraday's law) is a law of electromagnetism predicting how a magnetic field will interact with an electric circuit to produce an electromotive force (emf). This phenomenon, known as electromagnetic induction , is the fundamental operating principle of transformers , inductors , and many types of electric ...

  7. Faraday's laws of electrolysis - Wikipedia

    en.wikipedia.org/wiki/Faraday's_laws_of_electrolysis

    For Faraday's first law, M, F, v are constants; thus, the larger the value of Q, the larger m will be. For Faraday's second law, Q, F, v are constants; thus, the larger the value of (equivalent weight), the larger m will be. In the simple case of constant-current electrolysis, Q = It, leading to

  8. Electromagnetic induction - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_induction

    Faraday explained electromagnetic induction using a concept he called lines of force. However, scientists at the time widely rejected his theoretical ideas, mainly because they were not formulated mathematically. [9] An exception was James Clerk Maxwell, who used Faraday's ideas as the basis of his quantitative electromagnetic theory.

  9. Faraday efficiency - Wikipedia

    en.wikipedia.org/wiki/Faraday_efficiency

    The word "Faraday" in this term has two interrelated aspects: first, the historic unit for charge is the faraday (F), but has since been replaced by the coulomb (C); and secondly, the related Faraday's constant (F) correlates charge with moles of matter and electrons (amount of substance).