enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Causal graph - Wikipedia

    en.wikipedia.org/wiki/Causal_graph

    Figure 1 is a causal graph that represents this model specification. Each variable in the model has a corresponding node or vertex in the graph. Additionally, for each equation, arrows are drawn from the independent variables to the dependent variables. These arrows reflect the direction of causation.

  3. Coefficient of determination - Wikipedia

    en.wikipedia.org/wiki/Coefficient_of_determination

    Ordinary least squares regression of Okun's law.Since the regression line does not miss any of the points by very much, the R 2 of the regression is relatively high.. In statistics, the coefficient of determination, denoted R 2 or r 2 and pronounced "R squared", is the proportion of the variation in the dependent variable that is predictable from the independent variable(s).

  4. Causal notation - Wikipedia

    en.wikipedia.org/wiki/Causal_notation

    There exist several forms of causal diagrams including Ishikawa diagrams, directed acyclic graphs, causal loop diagrams, [10] and why-because graphs (WBGs). The image below shows a partial why-because graph used to analyze the capsizing of the Herald of Free Enterprise. Partial Why–because graph of the capsizing of the Herald of Free Enterprise

  5. Causal map - Wikipedia

    en.wikipedia.org/wiki/Causal_map

    In software testing, a cause–effect graph is a directed graph that maps a set of causes to a set of effects. The causes may be thought of as the input to the program, and the effects may be thought of as the output. Usually the graph shows the nodes representing the causes on the left side and the nodes representing the effects on the right side.

  6. Causal model - Wikipedia

    en.wikipedia.org/wiki/Causal_model

    Judea Pearl defines a causal model as an ordered triple ,, , where U is a set of exogenous variables whose values are determined by factors outside the model; V is a set of endogenous variables whose values are determined by factors within the model; and E is a set of structural equations that express the value of each endogenous variable as a function of the values of the other variables in U ...

  7. Rubin causal model - Wikipedia

    en.wikipedia.org/wiki/Rubin_causal_model

    Rubin defines a causal effect: Intuitively, the causal effect of one treatment, E, over another, C, for a particular unit and an interval of time from to is the difference between what would have happened at time if the unit had been exposed to E initiated at and what would have happened at if the unit had been exposed to C initiated at : 'If an hour ago I had taken two aspirins instead of ...

  8. Causal inference - Wikipedia

    en.wikipedia.org/wiki/Causal_inference

    Causal graph where the hidden confounders Z have an effect on the observable variables X, the outcome y and the choice of treatment t. Causal Inference has also been used for treatment effect estimation. Assuming a set of observable patient symptoms(X) caused by a set of hidden causes(Z) we can choose to give or not a treatment t.

  9. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.