Search results
Results from the WOW.Com Content Network
The contribution of the muscle to the specific heat of the body is approximately 47%, and the contribution of the fat and skin is approximately 24%. The specific heat of tissues range from ~0.7 kJ · kg−1 · °C−1 for tooth (enamel) to 4.2 kJ · kg−1 · °C−1 for eye (sclera). [13]
The specific heat capacities of iron, granite, and hydrogen gas are about 449 J⋅kg −1 ⋅K −1, 790 J⋅kg −1 ⋅K −1, and 14300 J⋅kg −1 ⋅K −1, respectively. [4] While the substance is undergoing a phase transition , such as melting or boiling, its specific heat capacity is technically undefined, because the heat goes into ...
All values refer to 25 °C and to the thermodynamically stable standard state at that temperature unless noted. Values from CRC refer to "100 kPa (1 bar or 0.987 standard atmospheres )". Lange indirectly defines the values to be standard atmosphere of "1 atm (101325 Pa)", although citing the same NBS and JANAF sources among others.
The "grand calorie" (also "kilocalorie", "kilogram-calorie", or "food calorie"; "kcal" or "Cal") is 1000 cal, that is, exactly 4184 J. It was originally defined so that the heat capacity of 1 kg of water would be 1 kcal/°C. With these units of heat energy, the units of heat capacity are 1 cal/°C = 4.184 J/K ; 1 kcal/°C = 4184 J/K.
Toggle the table of contents. ... J⋅kg −1 ⋅K −1: ... J⋅kg −1: L 2 T −2: Ratio of isobaric to isochoric heat capacity, ...
In general, proteins have lower energy densities (≈16 kJ/g) than carbohydrates (≈17 kJ/g), whereas fats provide much higher energy densities (≈38 kJ/g), [8] 2 + 1 ⁄ 4 times as much energy. Fats contain more carbon-carbon and carbon-hydrogen bonds than carbohydrates or proteins, yielding higher energy density. [ 9 ]
Boltzmann constant: The Boltzmann constant, k, is one of seven fixed constants defining the International System of Units, the SI, with k = 1.380 649 x 10-23 J K-1.The Boltzmann constant is a proportionality constant between the quantities temperature (with unit kelvin) and energy (with unit joule).
The above value of 1.4 is highly consistent with the measured adiabatic indices for dry air within a temperature range of 0–200 °C, exhibiting a deviation of only 0.2% (see tabulation above). For a linear triatomic molecule such as CO 2 , there are only 5 degrees of freedom (3 translations and 2 rotations), assuming vibrational modes are not ...