enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Determining the number of clusters in a data set - Wikipedia

    en.wikipedia.org/wiki/Determining_the_number_of...

    The average silhouette of the data is another useful criterion for assessing the natural number of clusters. The silhouette of a data instance is a measure of how closely it is matched to data within its cluster and how loosely it is matched to data of the neighboring cluster, i.e., the cluster whose average distance from the datum is lowest. [8]

  3. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    The term "k-means" was first used by James MacQueen in 1967, [2] though the idea goes back to Hugo Steinhaus in 1956. [3]The standard algorithm was first proposed by Stuart Lloyd of Bell Labs in 1957 as a technique for pulse-code modulation, although it was not published as a journal article until 1982. [4]

  4. Directional statistics - Wikipedia

    en.wikipedia.org/wiki/Directional_statistics

    Directional statistics (also circular statistics or spherical statistics) is the subdiscipline of statistics that deals with directions (unit vectors in Euclidean space, R n), axes (lines through the origin in R n) or rotations in R n. More generally, directional statistics deals with observations on compact Riemannian manifolds including the ...

  5. Model-based clustering - Wikipedia

    en.wikipedia.org/wiki/Model-based_clustering

    The BIC plot shows the BIC values for each combination of the number of clusters, , and the clustering model from the Table. Each curve corresponds to a different clustering model. The BIC favors 3 groups, which corresponds to the clinical assessment. It also favors the unconstrained covariance model, VVV.

  6. Automatic clustering algorithms - Wikipedia

    en.wikipedia.org/wiki/Automatic_Clustering...

    If the chart looks like an arm, the best value of k will be on the "elbow". [2] Another method that modifies the k-means algorithm for automatically choosing the optimal number of clusters is the G-means algorithm. It was developed from the hypothesis that a subset of the data follows a Gaussian distribution.

  7. Cluster analysis - Wikipedia

    en.wikipedia.org/wiki/Cluster_analysis

    Centroid model s: for example, the k-means algorithm represents each cluster by a single mean vector. Distribution model s: clusters are modeled using statistical distributions, such as multivariate normal distributions used by the expectation-maximization algorithm.

  8. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The normal distribution, also called the Gaussian or the bell curve. It is ubiquitous in nature and statistics due to the central limit theorem: every variable that can be modelled as a sum of many small independent, identically distributed variables with finite mean and variance is approximately normal. The normal-exponential-gamma distribution

  9. List of statistics articles - Wikipedia

    en.wikipedia.org/wiki/List_of_statistics_articles

    Normal curve equivalent; Normal distribution; Normal probability plot – see also rankit; Normal score – see also rankit and Z score; Normal variance-mean mixture; Normal-exponential-gamma distribution; Normal-gamma distribution; Normal-inverse Gaussian distribution; Normal-scaled inverse gamma distribution; Normality test; Normalization ...