Search results
Results from the WOW.Com Content Network
The asymptotic throughput (less formal asymptotic bandwidth) for a packet-mode communication network is the value of the maximum throughput function, when the incoming network load approaches infinity, either due to a message size, [3] or the number of data sources. As other bit rates and data bandwidths, the asymptotic throughput is measured ...
Reasons for measuring throughput in networks. People are often concerned about measuring the maximum data throughput in bits per second of a communications link or network access. A typical method of performing a measurement is to transfer a 'large' file from one system to another system and measure the time required to complete the transfer or ...
Throughput is controlled by available bandwidth, as well as the available signal-to-noise ratio and hardware limitations. Throughput for the purpose of this article will be understood to be measured from the arrival of the first bit of data at the receiver, to decouple the concept of throughput from the concept of latency.
Bandwidth sometimes defines the net bit rate (aka. peak bit rate, information rate, or physical layer useful bit rate), channel capacity, or the maximum throughput of a logical or physical communication path in a digital communication system. For example, bandwidth tests measure the maximum throughput of a computer network.
The consumed bandwidth in bit/s, corresponds to achieved throughput or goodput, i.e., the average rate of successful data transfer through a communication path.The consumed bandwidth can be affected by technologies such as bandwidth shaping, bandwidth management, bandwidth throttling, bandwidth cap, bandwidth allocation (for example bandwidth allocation protocol and dynamic bandwidth ...
Data-rate units, measures of the bit rate or baud rate of a link; Data transfer rate (disk drive), a data rate specific to disk drive operations; Throughput, the rate of successful message delivery, or level of bandwidth consumption; Transfers per second
Link throughput ≈ Bitrate × Transmission time / roundtrip time. The message delivery time or latency over a network depends on the message size in bit, and the network throughput or effective data rate in bit/s, as: Message delivery time = Message size / Network throughput
Data compression ratio, also known as compression power, is a measurement of the relative reduction in size of data representation produced by a data compression algorithm. It is typically expressed as the division of uncompressed size by compressed size.