Search results
Results from the WOW.Com Content Network
By practicing with a series of trivia questions, it is possible for subjects to fine-tune their ability to assess probabilities. For example, a subject may be asked: True or False: "A hockey puck fits in a golf hole" Confidence: Choose the probability that best represents your chance of getting this question right... 50% 60% 70% 80% 90% 100%
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
Morey et al. [27] point out that several of these confidence procedures, including the one for ω 2, have the property that as the F statistic becomes increasingly small—indicating misfit with all possible values of ω 2 —the confidence interval shrinks and can even contain only the single value ω 2 = 0; that is, the CI is infinitesimally ...
The confidence region is calculated in such a way that if a set of measurements were repeated many times and a confidence region calculated in the same way on each set of measurements, then a certain percentage of the time (e.g. 95%) the confidence region would include the point representing the "true" values of the set of variables being estimated.
Classically, a confidence distribution is defined by inverting the upper limits of a series of lower-sided confidence intervals. [15] [16] [page needed] In particular, For every α in (0, 1), let (−∞, ξ n (α)] be a 100α% lower-side confidence interval for θ, where ξ n (α) = ξ n (X n,α) is continuous and increasing in α for each sample X n.
In general, with a normally-distributed sample mean, Ẋ, and with a known value for the standard deviation, σ, a 100(1-α)% confidence interval for the true μ is formed by taking Ẋ ± e, with e = z 1-α/2 (σ/n 1/2), where z 1-α/2 is the 100(1-α/2)% cumulative value of the standard normal curve, and n is the number of data values in that ...
In statistical estimation theory, the coverage probability, or coverage for short, is the probability that a confidence interval or confidence region will include the true value (parameter) of interest. It can be defined as the proportion of instances where the interval surrounds the true value as assessed by long-run frequency. [1]
Given a sample from a normal distribution, whose parameters are unknown, it is possible to give prediction intervals in the frequentist sense, i.e., an interval [a, b] based on statistics of the sample such that on repeated experiments, X n+1 falls in the interval the desired percentage of the time; one may call these "predictive confidence intervals".