Search results
Results from the WOW.Com Content Network
Energy crops are crops with a high yield of lignocellulosic biomass produced as a raw material for the production of second-generation biofuel; examples include switchgrass (Panicum virgatum) and elephant grass. The biofuels generated from these energy crops are sources of sustainable energy. [7] [8]
Sulfonated lignin (SL) refers to other forms of lignin by-product, such as those derived from the much more popular Kraft process, that have been processed to add sulfonic acid groups. The two have similar uses and are commonly confused with each other, with SL being much cheaper. [ 3 ]
The lignin is converted to lignosulfonates, which are soluble and can be separated from the cellulose fibers. For the production of cellulose, the sulfite process competes with the Kraft process which produces stronger fibers and is less environmentally costly. idealized scheme for lignin depolymerization by the Sulfite process.
This is a list of electricity-generating power stations in the U.S. state of Maryland, sorted by type and name. In 2022, Maryland had a total summer capacity of 11,908 MW through all of its power plants, and a net generation of 37,139 GWh. [2]
The term "lignin characterization" (or "lignin analysis") refers to a group of activities within lignin research aiming at describing the characteristics of a lignin by determination of its most important properties. [1] Most often, this term is used to describe the characterization of technical lignins by means of chemical or thermo-chemical ...
In addition to their many essential roles in living organisms, biopolymers have applications in many fields including the food industry, manufacturing, packaging, and biomedical engineering. [1] In the structure of DNA is a pair of biopolymers, polynucleotides, forming the double helix structure
Idealized structure of lignin from a softwood. Lignin is a class of complex organic polymers that form key structural materials in the support tissues of most plants. [1] Lignins are particularly important in the formation of cell walls, especially in wood and bark, because they lend rigidity and do not rot easily.
The three-level air system was a significant improvement, but better results were required. Use of CFD models offered a new insight of air system workings. The first to develop a new air system was Kvaerner (Tampella) with their 1990 multilevel secondary air in Kemi, Finland, which was later adapted to a string of large recovery boilers. [10]