Search results
Results from the WOW.Com Content Network
The colonial marine cyanobacterium Trichodesmium is thought to fix nitrogen on such a scale that it accounts for almost half of the nitrogen fixation in marine systems globally. [52] Marine surface lichens and non-photosynthetic bacteria belonging in Proteobacteria and Planctomycetes fixate significant atmospheric nitrogen. [ 53 ]
Cyanobacteria remain critical to marine ecosystems as primary producers in oceanic gyres, as agents of biological nitrogen fixation, and, in modified form, as the plastids of marine algae. [ 184 ] Origin of chloroplasts
Trichodesmium is thought to fix nitrogen on such a scale that it accounts for almost half of the nitrogen fixation in marine systems globally. [1] Trichodesmium is the only known diazotroph able to fix nitrogen in daylight under aerobic conditions without the use of heterocysts. [2]
Nitrogen enters the ocean through precipitation, runoff, or as N 2 from the atmosphere. Nitrogen cannot be utilized by phytoplankton as N 2 so it must undergo nitrogen fixation which is performed predominantly by cyanobacteria. [82] Without supplies of fixed nitrogen entering the marine cycle, the fixed nitrogen would be used up in about 2000 ...
As a result, marine N 2-fixing microorganisms other than Trichodesimum were found by sequencing PCR-amplified fragments of the gene nitrogenase (nifH) .Nitrogenase is the enzyme that catalyzes nitrogen fixation, and studies have shown that nifH is widely distributed throughout the different parts of the ocean. [10]
2 so it must undergo nitrogen fixation which is performed predominately by cyanobacteria. [41] Without supplies of fixed nitrogen entering the marine cycle, the fixed nitrogen would be used up in about 2000 years. [42] Phytoplankton need nitrogen in biologically available forms for the initial synthesis of organic matter.
Trichodesmium erythraeum is a marine cyanobacteria species characterized by its prolific diazotrophic capabilities. [1] They play a dominant role in the ocean ecosystem, supplying a steady and significant source of new, biologically available nitrogen and cycling phosphorus. [2]
The marine nitrogen cycle consists of complex microbial transformations which include the fixation of nitrogen, its assimilation, nitrification, anammox and denitrification. [78] Some of these processes take place in deep water so that where there is an upwelling of cold waters, and also near estuaries where land-sourced nutrients are present ...