Search results
Results from the WOW.Com Content Network
In mathematics, a manifold is a topological space that locally resembles Euclidean space near each point. ... By definition, all manifolds are topological manifolds ...
The study of manifolds combines many important areas of mathematics: it generalizes concepts such as curves and surfaces as well as ideas from linear algebra and topology. Certain special classes of manifolds also have additional algebraic structure; they may behave like groups, for instance. In that case, they are called Lie Groups.
In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles.
In topology, a topological manifold is a topological space that locally resembles real n-dimensional Euclidean space. Topological manifolds are an important class of topological spaces, with applications throughout mathematics. All manifolds are topological manifolds by definition.
Manifolds in contemporary mathematics come in a number of types. These include: smooth manifolds, which are basic in calculus in several variables, mathematical analysis and differential geometry; piecewise-linear manifolds; topological manifolds. There are also related classes, such as homology manifolds and orbifolds, that resemble manifolds.
The notion of a differentiable manifold refines that of a manifold by requiring the functions that transform between charts to be differentiable. In mathematics, a differentiable manifold (also differential manifold) is a type of manifold that is locally similar enough to a vector space to allow one to apply calculus.
In mathematics, specifically geometry and topology, the classification of manifolds is a basic question, about which much is known, and many open questions remain.
In the part of mathematics referred to as topology, a surface is a two-dimensional manifold. Some surfaces arise as the boundaries of three-dimensional solid figures; for example, the sphere is the boundary of the solid ball. Other surfaces arise as graphs of functions of two variables; see the figure at right.