enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Transitive reduction - Wikipedia

    en.wikipedia.org/wiki/Transitive_reduction

    The transitive reduction of a finite directed graph G is a graph with the fewest possible edges that has the same reachability relation as the original graph. That is, if there is a path from a vertex x to a vertex y in graph G, there must also be a path from x to y in the transitive reduction of G, and vice versa.

  3. Directed acyclic graph - Wikipedia

    en.wikipedia.org/wiki/Directed_acyclic_graph

    The transitive closure of a DAG is the graph with the most edges that has the same reachability relation as the DAG. It has an edge u → v for every pair of vertices ( u , v ) in the reachability relation ≤ of the DAG, and may therefore be thought of as a direct translation of the reachability relation ≤ into graph-theoretic terms.

  4. Reachability - Wikipedia

    en.wikipedia.org/wiki/Reachability

    If is acyclic, then its reachability relation is a partial order; any partial order may be defined in this way, for instance as the reachability relation of its transitive reduction. [2] A noteworthy consequence of this is that since partial orders are anti-symmetric, if s {\displaystyle s} can reach t {\displaystyle t} , then we know that t ...

  5. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    Specifically, taking a strict partial order relation (, <), a directed acyclic graph (DAG) may be constructed by taking each element of to be a node and each element of < to be an edge. The transitive reduction of this DAG [b] is then the Hasse diagram. Similarly this process can be reversed to construct strict partial orders from certain DAGs.

  6. Transitive closure - Wikipedia

    en.wikipedia.org/wiki/Transitive_closure

    The transitive closure of the adjacency relation of a directed acyclic graph (DAG) is the reachability relation of the DAG and a strict partial order. A cluster graph, the transitive closure of an undirected graph. The transitive closure of an undirected graph produces a cluster graph, a disjoint union of cliques.

  7. Hasse diagram - Wikipedia

    en.wikipedia.org/wiki/Hasse_diagram

    A Hasse diagram of the factors of 60 ordered by the is-a-divisor-of relation. In order theory, a Hasse diagram (/ ˈ h æ s ə /; German:) is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction.

  8. Acyclic orientation - Wikipedia

    en.wikipedia.org/wiki/Acyclic_orientation

    A transitive orientation of a graph is an acyclic orientation that equals its own transitive closure. Not every graph has a transitive orientation; the graphs that do are the comparability graphs. [8] Complete graphs are special cases of comparability graphs, and transitive tournaments are special cases of transitive orientations.

  9. Dependency graph - Wikipedia

    en.wikipedia.org/wiki/Dependency_graph

    A depends on B and C; B depends on D. Given a set of objects and a transitive relation with (,) modeling a dependency "a depends on b" ("a needs b evaluated first"), the dependency graph is a graph = (,) with the transitive reduction of R.

  1. Related searches transitive reduction of a dag test table with mean of 5 and center of pain

    transitive reduction of a dagtransitive reduction graph