Search results
Results from the WOW.Com Content Network
An automaton (/ ɔː ˈ t ɒ m ə t ən / ⓘ; pl.: automata or automatons) is a relatively self-operating machine, or control mechanism designed to automatically follow a sequence of operations, or respond to predetermined instructions. [1]
An oscillator in Brian's Brain. The "dying state" cells tend to lead to directional movement, so almost every pattern in Brian's Brain is a spaceship. Many spaceships are rakes, which emit other spaceships. Another result is that many Brian's Brain patterns will explode messily and chaotically, and often will result in or contain great diagonal ...
A special class of cellular automata are totalistic cellular automata. The state of each cell in a totalistic cellular automaton is represented by a number (usually an integer value drawn from a finite set), and the value of a cell at time t depends only on the sum of the values of the cells in its neighborhood (possibly including the cell ...
A finite-state machine (FSM) or finite-state automaton (FSA, plural: automata), finite automaton, or simply a state machine, is a mathematical model of computation.It is an abstract machine that can be in exactly one of a finite number of states at any given time.
Automata theory was initially considered a branch of mathematical systems theory, studying the behavior of discrete-parameter systems. Early work in automata theory differed from previous work on systems by using abstract algebra to describe information systems rather than differential calculus to describe material systems. [2]
The most famous examples in this category are the rules "Brian's Brain" (B2/S/3) and "Star Wars" (B2/S345/4). Random patterns in these two rules feature a large variety of spaceships and rakes with a speed of c, often crashing and combining into even more objects. Larger than Life is a family of cellular automata studied by Kellie Michele Evans ...
It will be able to do everything that a human brain can, but without any practical limits on the size of its memory or the speed at which it operates. This will be a profound change."
Cellular automata were used in the early days of artificial life, and are still often used for ease of scalability and parallelization. Alife and cellular automata share a closely tied history. Artificial neural networks are sometimes used to model the brain of an agent.