Search results
Results from the WOW.Com Content Network
It is divisible by 3 and by 8. [6] 552: it is divisible by 3 and by 8. 25: The last two digits are 00, 25, 50 or 75. 134,250: 50 is divisible by 25. 26: It is divisible by 2 and by 13. [6] 156: it is divisible by 2 and by 13. Subtracting 5 times the last digit from 2 times the rest of the number gives a multiple of 26. (Works because 52 is ...
In number theory, a weird number is a natural number that is abundant but not semiperfect. [1] [2] In other words, the sum of the proper divisors (divisors including 1 but not itself) of the number is greater than the number, but no subset of those divisors sums to the number itself.
An integer is divisible or evenly divisible by another integer if is a divisor of ; this implies dividing by leaves no remainder. Definition. An integer is ...
In mathematics an even integer, that is, a number that is divisible by 2, is called evenly even or doubly even if it is a multiple of 4, and oddly even or singly even if it is not. The former names are traditional ones, derived from ancient Greek mathematics ; the latter have become common in recent decades.
12 (twelve) is the natural number following 11 and preceding 13.. Twelve is the 3rd superior highly composite number, [1] the 3rd colossally abundant number, [2] the 5th highly composite number, and is divisible by the numbers from 1 to 4, and 6, a large number of divisors comparatively.
He also says (wrongly) that the perfect numbers end in 6 or 8 alternately. (The first 5 perfect numbers end with digits 6, 8, 6, 8, 6; but the sixth also ends in 6.) Philo of Alexandria in his first-century book "On the creation" mentions perfect numbers, claiming that the world was created in 6 days and the moon orbits in 28 days because 6 and ...
The Diccionario de la lengua española [a] (DLE; [b] English: Dictionary of the Spanish language) is the authoritative dictionary of the Spanish language. [1] It is produced, edited, and published by the Royal Spanish Academy, with the participation of the Association of Academies of the Spanish Language.
If a divisible group is a subgroup of an abelian group then it is a direct summand of that abelian group. [2] Every abelian group can be embedded in a divisible group. [3] Put another way, the category of abelian groups has enough injectives. Non-trivial divisible groups are not finitely generated.