enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stereocilia (inner ear) - Wikipedia

    en.wikipedia.org/wiki/Stereocilia_(inner_ear)

    Deflections of the stereocilia in the opposite direction toward the shortest stereocilia causes transduction channels to close. In this situation, the hair cells become hyperpolarized and the nerve afferents are not excited. [7] [8] [9] There are two different types of fluid that surround the hair cells of the inner ear.

  3. Neural encoding of sound - Wikipedia

    en.wikipedia.org/wiki/Neural_encoding_of_sound

    The inner hair cells are the primary sensory receptors and a significant amount of the sensory input to the auditory cortex occurs from these hair cells. Outer hair cells on the other hand boost the mechanical signal by using electromechanical feedback.

  4. Hair cell - Wikipedia

    en.wikipedia.org/wiki/Hair_cell

    In mammalian outer hair cells, the varying receptor potential is converted to active vibrations of the cell body. This mechanical response to electrical signals is termed somatic electromotility; [13] it drives variations in the cell's length, synchronized to the incoming sound signal, and provides mechanical amplification by feedback to the traveling wave.

  5. Vestibular system - Wikipedia

    en.wikipedia.org/wiki/Vestibular_system

    The opposing effects caused by a tilt of the head cause differential sensory inputs from the hair cell bundles allowing humans to tell which way the head is tilting. [8] Sensory information is then sent to the brain, which can respond with appropriate corrective actions to the nervous and muscular systems to ensure that balance and awareness ...

  6. Mechanosensation - Wikipedia

    en.wikipedia.org/wiki/Mechanosensation

    Tiny cells in the inner ear, called hair cells, are responsible for hearing and balance. States of neuropathic pain, such as hyperalgesia and allodynia, are also directly related to mechanosensation. A wide array of elements are involved in the process of mechanosensation, many of which are still not fully understood.

  7. Inner ear regeneration - Wikipedia

    en.wikipedia.org/wiki/Inner_Ear_Regeneration

    Hair cells die of old age, acoustic overstimulation and other traumas. [2] Oxotoxin exposure, such as aminoglycoside antibiotics and cisplatin, is also a major contributor to hair cell death. [7] Because mammals have very limited hair cell regeneration, hearing loss is essentially irreversible and therefore a therapeutic target for regeneration.

  8. Sensorineural hearing loss - Wikipedia

    en.wikipedia.org/wiki/Sensorineural_hearing_loss

    Sensorineural hearing loss (SNHL) is a type of hearing loss in which the root cause lies in the inner ear, sensory organ (cochlea and associated structures), or the vestibulocochlear nerve (cranial nerve VIII). SNHL accounts for about 90% of reported hearing loss.

  9. Listener fatigue - Wikipedia

    en.wikipedia.org/wiki/Listener_fatigue

    The stereocilia (hair cells) of the inner ear can become subjected to bending from loud noises. Because they are not regeneratable in humans, any major damage or loss of these hair cells leads to permanent hearing impairment and other hearing-related diseases. [2] Outer hair cells serve as acoustic amplifiers for stimulation of the inner hair ...