Search results
Results from the WOW.Com Content Network
Albert Einstein, who had developed his theory of general relativity in 1915, initially denied the possibility of black holes, [4] even though they were a genuine implication of the Schwarzschild metric, obtained by Karl Schwarzschild in 1916, the first known non-trivial exact solution to Einstein's field equations. [1]
(Supermassive black holes up to 21 billion (2.1 × 10 10) M ☉ have been detected, such as NGC 4889.) [16] Unlike stellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the ...
The Kerr metric or Kerr geometry describes the geometry of empty spacetime around a rotating uncharged axially symmetric black hole with a quasispherical event horizon.The Kerr metric is an exact solution of the Einstein field equations of general relativity; these equations are highly non-linear, which makes exact solutions very difficult to find.
A Schwarzschild black hole is described by the Schwarzschild metric, and cannot be distinguished from any other Schwarzschild black hole except by its mass. The Schwarzschild black hole is characterized by a surrounding spherical boundary, called the event horizon , which is situated at the Schwarzschild radius ( r s {\displaystyle r_{\text{s ...
In physics, black hole thermodynamics [1] is the area of study that seeks to reconcile the laws of thermodynamics with the existence of black hole event horizons.As the study of the statistical mechanics of black-body radiation led to the development of the theory of quantum mechanics, the effort to understand the statistical mechanics of black holes has had a deep impact upon the ...
A rotating black hole is a black hole that possesses angular momentum. In particular, it rotates about one of its axes of symmetry. All celestial objects – planets, stars , galaxies, black holes – spin. [1] [2] [3] The boundaries of a Kerr black hole relevant to astrophysics. Note that there are no physical "surfaces" as such.
For small mass black holes, the two are very different — there is a singularity at the center of the black hole, and there is no singularity past the cosmological horizon. But the Nariai limit considers making the black hole bigger and bigger, until its event horizon has the same area as the cosmological de Sitter horizon.
The horizon r = 2GM and finite v (the black hole horizon) is different from that with r = 2GM and finite u (the white hole horizon) . The metric in Kruskal–Szekeres coordinates covers all of the extended Schwarzschild spacetime in a single coordinate system. Its chief disadvantage is that in those coordinates the metric depends on both the ...