Search results
Results from the WOW.Com Content Network
This is a list of factorial and binomial topics in mathematics. See also binomial (disambiguation). Abel's binomial theorem; Alternating factorial; Antichain; Beta function; Bhargava factorial; Binomial coefficient. Pascal's triangle; Binomial distribution; Binomial proportion confidence interval; Binomial-QMF (Daubechies wavelet filters ...
In mathematical analysis, factorials are used in power series for the exponential function and other functions, and they also have applications in algebra, number theory, probability theory, and computer science. Much of the mathematics of the factorial function was developed beginning in the late 18th and early 19th centuries.
exp4j is a small Java library for evaluation of mathematical expressions. SuanShu is an open-source Java math library. It supports numerical analysis, statistics and optimization. Maja is an open-source Java library focusing primarily on correct implementations of various special functions.
The first IMSL Library for the Fortran language was released in 1970, followed by a C-language version originally called C/Base in 1991, a Java-language version in 2002, and the C#-language version in 2004. Several recent product releases have involved making IMSL Library functions available from Python. These releases are Python wrappers to ...
The NAG Library [1] can be accessed from a variety of languages and environments such as C/C++, [2] Fortran, [3] Python, [4] AD, [5] MATLAB, [6] Java [7] and .NET. [8] The main supported systems are currently Windows, Linux and macOS running on x86-64 architectures; 32-bit Windows support is being phased out. Some NAG mathematical optimization ...
A similar result holds for the rising factorial and the backward difference operator. The study of analogies of this type is known as umbral calculus. A general theory covering such relations, including the falling and rising factorial functions, is given by the theory of polynomial sequences of binomial type and Sheffer sequences. Falling and ...
In mathematics, some functions or groups of functions are important enough to deserve their own names. This is a listing of articles which explain some of these functions in more detail. There is a large theory of special functions which developed out of statistics and mathematical physics.
The factorial of a non-negative integer n, denoted by n!, is the product of all positive integers less than or equal to n. For example, 5! = 5×4×3×2×1 = 120. By convention, the value of 0! is defined as 1. This classical factorial function appears prominently in many theorems in number theory. The following are a few of these theorems. [1]