Search results
Results from the WOW.Com Content Network
Mathematically, the simplest kind of transverse wave is a plane linearly polarized sinusoidal one. "Plane" here means that the direction of propagation is unchanging and the same over the whole medium; "linearly polarized" means that the direction of displacement too is unchanging and the same over the whole medium; and the magnitude of the displacement is a sinusoidal function only of time ...
Mode conversion occurs when a wave encounters an interface between materials of different impedances and the incident angle is not normal to the interface. [1] Thus, for example, if a longitudinal wave from a fluid (e.g., water or air) strikes a solid (e.g., steel plate), it is usually refracted and reflected as a function of the angle of incidence, but if some of the energy causes particle ...
A transverse mode of electromagnetic radiation is a particular electromagnetic field pattern of the radiation in the plane perpendicular (i.e., transverse) to the radiation's propagation direction. Transverse modes occur in radio waves and microwaves confined to a waveguide, and also in light waves in an optical fiber and in a laser's optical ...
A plane wave is classified as a transverse wave if the field disturbance at each point is described by a vector perpendicular to the direction of propagation (also the direction of energy transfer); or longitudinal wave if those vectors are aligned with the propagation direction. Mechanical waves include both transverse and longitudinal waves ...
Mechanical waves can be produced only in media which possess elasticity and inertia. There are three types of mechanical waves: transverse waves, longitudinal waves, and surface waves. Some of the most common examples of mechanical waves are water waves, sound waves, and seismic waves. Like all waves, mechanical waves transport energy.
Electromagnetic waves (such as light), traveling in free space or another homogeneous isotropic non-attenuating medium, are properly described as transverse waves, meaning that a plane wave's electric field vector E and magnetic field H are each in some direction perpendicular to (or "transverse" to) the direction of wave propagation; E and H ...
The phase velocity is the rate at which the phase of the wave propagates in space. The group velocity is the rate at which the wave envelope, i.e. the changes in amplitude, propagates. The wave envelope is the profile of the wave amplitudes; all transverse displacements are bound by the envelope profile.
S waves are transverse waves, meaning that the direction of particle movement of an S wave is perpendicular to the direction of wave propagation, and the main restoring force comes from shear stress. [2] Therefore, S waves cannot propagate in liquids [3] with zero (or very low) viscosity; however, they may propagate in liquids with high ...