enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Concurrent lines - Wikipedia

    en.wikipedia.org/wiki/Concurrent_lines

    The perpendicular bisectors of all chords of a circle are concurrent at the center of the circle. The lines perpendicular to the tangents to a circle at the points of tangency are concurrent at the center. All area bisectors and perimeter bisectors of a circle are diameters, and they are concurrent at the circle's center.

  3. Midpoint - Wikipedia

    en.wikipedia.org/wiki/Midpoint

    The perpendicular bisector of a side of a triangle is the line that is perpendicular to that side and passes through its midpoint. The three perpendicular bisectors of a triangle's three sides intersect at the circumcenter (the center of the circle through the three vertices).

  4. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    The line segments OT 1 and OT 2 are radii of the circle C; since both are inscribed in a semicircle, they are perpendicular to the line segments PT 1 and PT 2, respectively. But only a tangent line is perpendicular to the radial line. Hence, the two lines from P and passing through T 1 and T 2 are tangent to the circle C.

  5. Intersecting chords theorem - Wikipedia

    en.wikipedia.org/wiki/Intersecting_chords_theorem

    In Euclidean geometry, the intersecting chords theorem, or just the chord theorem, is a statement that describes a relation of the four line segments created by two intersecting chords within a circle. It states that the products of the lengths of the line segments on each chord are equal.

  6. Intersection (geometry) - Wikipedia

    en.wikipedia.org/wiki/Intersection_(geometry)

    The simplest case in Euclidean geometry is the lineline intersection between two distinct lines, which either is one point (sometimes called a vertex) or does not exist (if the lines are parallel). Other types of geometric intersection include: Line–plane intersection; Line–sphere intersection; Intersection of a polyhedron with a line

  7. Chord (geometry) - Wikipedia

    en.wikipedia.org/wiki/Chord_(geometry)

    The perpendicular line passing through the chord's midpoint is called sagitta (Latin for "arrow"). More generally, a chord is a line segment joining two points on any curve, for instance, on an ellipse. A chord that passes through a circle's center point is the circle's diameter.

  8. Circle - Wikipedia

    en.wikipedia.org/wiki/Circle

    A perpendicular line from the centre of a circle bisects the chord. The line segment through the centre bisecting a chord is perpendicular to the chord. If a central angle and an inscribed angle of a circle are subtended by the same chord and on the same side of the chord, then the central angle is twice the inscribed angle.

  9. Thales's theorem - Wikipedia

    en.wikipedia.org/wiki/Thales's_theorem

    The locus of points equidistant from two given points is a straight line that is called the perpendicular bisector of the line segment connecting the points. The perpendicular bisectors of any two sides of a triangle intersect in exactly one point. This point must be equidistant from the vertices of the triangle.