Search results
Results from the WOW.Com Content Network
Helium is a commonly used carrier gas for gas chromatography. The age of rocks and minerals that contain uranium and thorium can be estimated by measuring the level of helium with a process known as helium dating. [28] [30] Helium at low temperatures is used in cryogenics and in certain cryogenic applications.
Liquid helium is a physical state of helium at very low temperatures at standard atmospheric pressures.Liquid helium may show superfluidity.. At standard pressure, the chemical element helium exists in a liquid form only at the extremely low temperature of −269 °C (−452.20 °F; 4.15 K).
According to QFT the universe is made up of matter fields whose quanta are fermions (e.g. electrons and quarks), force fields whose quanta are bosons (i.e. photons and gluons) and a Higgs field whose quantum is the Higgs boson. The matter and force fields have zero-point energy. [2]
Helium-3 (3 He [1] [2] see also helion) is a light, stable isotope of helium with two protons and one neutron. (In contrast, the most common isotope, helium-4, has two protons and two neutrons.) Helium-3 and protium (ordinary hydrogen) are the only stable nuclides with more protons than neutrons. It was discovered in 1939.
Each atom of helium-4 is a boson particle, by virtue of its integer spin. A helium-3 atom is a fermion particle; it can form bosons only by pairing with another particle like itself, which occurs at much lower temperatures. The discovery of superfluidity in helium-3 was the basis for the award of the 1996 Nobel Prize in Physics. [1]
Inert atmospheres consisting of gases such as argon, nitrogen, or helium are commonly used in chemical reaction chambers and in storage containers for oxygen-or water-sensitive substances, to prevent unwanted reactions of these substances with oxygen or water. [4] Argon is widely used in fluorescence tubes and low energy light bulbs.
Helium is composed of two electrons bound by the electromagnetic force to a nucleus containing two protons along with two neutrons, depending on the isotope, held together by the strong force. Unlike for hydrogen , a closed-form solution to the Schrödinger equation for the helium atom has not been found.
Helium is the most common element in the universe after hydrogen, with a mass fraction of about 24%. Most of the helium in the universe was formed during Big Bang nucleosynthesis, but the amount of helium is steadily increasing due to the fusion of hydrogen in stellar nucleosynthesis (and, to a very slight degree, the alpha decay of heavy ...