Search results
Results from the WOW.Com Content Network
Adversarial machine learning has other uses besides generative modeling and can be applied to models other than neural networks. In control theory, adversarial learning based on neural networks was used in 2006 to train robust controllers in a game theoretic sense, by alternating the iterations between a minimizer policy, the controller, and a ...
In 2016, Reed, Akata, Yan et al. became the first to use generative adversarial networks for the text-to-image task. [5] [7] With models trained on narrow, domain-specific datasets, they were able to generate "visually plausible" images of birds and flowers from text captions like "an all black bird with a distinct thick, rounded bill".
In 2014, advancements such as the variational autoencoder and generative adversarial network produced the first practical deep neural networks capable of learning generative models, as opposed to discriminative ones, for complex data such as images. These deep generative models were the first to output not only class labels for images but also ...
Ian J. Goodfellow (born 1987 [1]) is an American computer scientist, engineer, and executive, most noted for his work on artificial neural networks and deep learning.He is a research scientist at Google DeepMind, [2] was previously employed as a research scientist at Google Brain and director of machine learning at Apple as well as one of the first employees at OpenAI, and has made several ...
With the rise of deep learning, a new family of methods, called deep generative models (DGMs), [8] [9] is formed through the combination of generative models and deep neural networks. An increase in the scale of the neural networks is typically accompanied by an increase in the scale of the training data, both of which are required for good ...
The Wasserstein Generative Adversarial Network (WGAN) is a variant of generative adversarial network (GAN) proposed in 2017 that aims to "improve the stability of learning, get rid of problems like mode collapse, and provide meaningful learning curves useful for debugging and hyperparameter searches".
Generative pretraining (GP) was a long-established concept in machine learning applications. [16] [17] It was originally used as a form of semi-supervised learning, as the model is trained first on an unlabelled dataset (pretraining step) by learning to generate datapoints in the dataset, and then it is trained to classify a labelled dataset. [18]
A flow-based generative model is a generative model used in machine learning that explicitly models a probability distribution by leveraging normalizing flow, [1] [2] [3] which is a statistical method using the change-of-variable law of probabilities to transform a simple distribution into a complex one.