enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Memorylessness - Wikipedia

    en.wikipedia.org/wiki/Memorylessness

    The only continuous random variable that is memoryless is the exponential random variable. It models random processes like time between consecutive events. [8] The memorylessness property asserts that the amount of time since the previous event has no effect on the future time until the next event occurs.

  3. Exponential distribution - Wikipedia

    en.wikipedia.org/wiki/Exponential_distribution

    In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...

  4. Markov property - Wikipedia

    en.wikipedia.org/wiki/Markov_property

    The term Markov assumption is used to describe a model where the Markov property is assumed to hold, such as a hidden Markov model. A Markov random field extends this property to two or more dimensions or to random variables defined for an interconnected network of items. [1] An example of a model for such a field is the Ising model.

  5. Renewal theory - Wikipedia

    en.wikipedia.org/wiki/Renewal_theory

    For example, if the renewal process is modelling the numbers of breakdown of different machines, then the holding time represents the time between one machine breaking down before another one does. The Poisson process is the unique renewal process with the Markov property , [ 1 ] as the exponential distribution is the unique continuous random ...

  6. Examples of Markov chains - Wikipedia

    en.wikipedia.org/wiki/Examples_of_Markov_chains

    This guess is not improved by the added knowledge that one started with $10, then went up to $11, down to $10, up to $11, and then to $12. The fact that the guess is not improved by the knowledge of earlier tosses showcases the Markov property, the memoryless property of a stochastic process. [1]

  7. Markovian arrival process - Wikipedia

    en.wikipedia.org/wiki/Markovian_arrival_process

    The simplest example is a Poisson process where D 0 = −λ and D 1 = λ where there is only one possible transition, it is observable, and occurs at rate λ. For Q to be a valid transition rate matrix, the following restrictions apply to the D i

  8. Markov chain - Wikipedia

    en.wikipedia.org/wiki/Markov_chain

    Markov chains and continuous-time Markov processes are useful in chemistry when physical systems closely approximate the Markov property. For example, imagine a large number n of molecules in solution in state A, each of which can undergo a chemical reaction to state B with a certain average rate. Perhaps the molecule is an enzyme, and the ...

  9. Residual time - Wikipedia

    en.wikipedia.org/wiki/Residual_time

    This is a known characteristic of the exponential distribution, i.e., its memoryless property. Intuitively, this means that it does not matter how long it has been since the last renewal epoch, the remaining time is still probabilistically the same as in the beginning of the holding time interval.