Search results
Results from the WOW.Com Content Network
The equation says the matter wave frequency in vacuum varies with wavenumber (= /) in the non-relativistic approximation. The variation has two parts: a constant part due to the de Broglie frequency of the rest mass ( ℏ ω 0 = m 0 c 2 {\displaystyle \hbar \omega _{0}=m_{0}c^{2}} ) and a quadratic part due to kinetic energy.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
These equations are inhomogeneous versions of the wave equation, with the terms on the right side of the equation serving as the source functions for the wave. As with any wave equation, these equations lead to two types of solution: advanced potentials (which are related to the configuration of the sources at future points in time), and ...
The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation. The homogeneous form of the equation, written in terms of either the electric field E or the magnetic field B, takes the form:
The dispersion relation is: ω 2 = ω p e 2 + 3 C e 2 k 2 {\displaystyle \omega ^{2}=\omega _{pe}^{2}+3C_{e}^{2}k^{2}} The first term on the right-hand side of the dispersion relation is the electron plasma oscillation related to the electric field force and the second term is related to the thermal motion of the electrons, where C e is the ...
A linearly polarized electromagnetic plane wave propagating parallel to the z-axis is a possible solution for the electromagnetic wave equations in free space. The electric field, E, and the magnetic field, B, are perpendicular to each other and the direction of propagation. Maxwell's equations can be combined to derive wave equations.
In other cases, Maxwell's equations are solved in a finite region of space, with appropriate conditions on the boundary of that region, for example an artificial absorbing boundary representing the rest of the universe, [24] [25] or periodic boundary conditions, or walls that isolate a small region from the outside world (as with a waveguide or ...
There is a widespread interpretation of Maxwell's equations indicating that spatially varying electric and magnetic fields can cause each other to change in time, thus giving rise to a propagating electromagnetic wave [6] (electromagnetism). However, Jefimenko's equations show an alternative point of view. [7]