enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    The equation says the matter wave frequency in vacuum varies with wavenumber (= /) in the non-relativistic approximation. The variation has two parts: a constant part due to the de Broglie frequency of the rest mass ( ℏ ω 0 = m 0 c 2 {\displaystyle \hbar \omega _{0}=m_{0}c^{2}} ) and a quadratic part due to kinetic energy.

  3. List of electromagnetism equations - Wikipedia

    en.wikipedia.org/wiki/List_of_electromagnetism...

    Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.

  4. Electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_wave_equation

    The electromagnetic wave equation is a second-order partial differential equation that describes the propagation of electromagnetic waves through a medium or in a vacuum. It is a three-dimensional form of the wave equation .

  5. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    The source free equations can be written by the action of the exterior derivative on this 2-form. But for the equations with source terms (Gauss's law and the Ampère-Maxwell equation), the Hodge dual of this 2-form is needed. The Hodge star operator takes a p-form to a (n − p)-form, where n is the number of dimensions.

  6. Electromagnetic electron wave - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_electron_wave

    The dispersion relation is: ω 2 = ω p e 2 + 3 C e 2 k 2 {\displaystyle \omega ^{2}=\omega _{pe}^{2}+3C_{e}^{2}k^{2}} The first term on the right-hand side of the dispersion relation is the electron plasma oscillation related to the electric field force and the second term is related to the thermal motion of the electrons, where C e is the ...

  7. Inhomogeneous electromagnetic wave equation - Wikipedia

    en.wikipedia.org/wiki/Inhomogeneous...

    Maxwell's equations can directly give inhomogeneous wave equations for the electric field E and magnetic field B. [1] Substituting Gauss's law for electricity and Ampère's law into the curl of Faraday's law of induction, and using the curl of the curl identity ∇ × (∇ × X) = ∇(∇ ⋅ X) − ∇ 2 X (The last term in the right side is the vector Laplacian, not Laplacian applied on ...

  8. Radiative transfer - Wikipedia

    en.wikipedia.org/wiki/Radiative_transfer

    Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of ...

  9. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    Maxwell's equations on a plaque on his statue in Edinburgh. Maxwell's equations, or Maxwell–Heaviside equations, are a set of coupled partial differential equations that, together with the Lorentz force law, form the foundation of classical electromagnetism, classical optics, electric and magnetic circuits.