enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Energy carrier - Wikipedia

    en.wikipedia.org/wiki/Energy_carrier

    Energy carriers are produced by the energy sector using primary energy sources. In the field of energetics, an energy carrier is produced by human technology from a primary energy source. Only the energy sector uses primary energy sources. Other sectors of society use an energy carrier to perform useful activities (end-uses). [3]

  3. Adenosine triphosphate - Wikipedia

    en.wikipedia.org/wiki/Adenosine_triphosphate

    The energy used by human cells in an adult requires the hydrolysis of 100 to 150 mol/L of ATP daily, which means a human will typically use their body weight worth of ATP over the course of the day. [30] Each equivalent of ATP is recycled 1000–1500 times during a single day (150 / 0.1 = 1500), [29] at approximately 9×10 20 molecules/s. [29]

  4. Hydrogen carrier - Wikipedia

    en.wikipedia.org/wiki/Hydrogen_carrier

    A hydrogen carrier is an organic macromolecule that transports atoms of hydrogen from one place to another inside a cell or from cell to cell for use in various metabolical processes. [1] Examples include NADPH , NADH , and FADH .

  5. Bioenergetic systems - Wikipedia

    en.wikipedia.org/wiki/Bioenergetic_systems

    Aerobic glycolysis Glycolysis – The first stage is known as glycolysis, which produces 2 ATP molecules, 2 reduced molecules of nicotinamide adenine dinucleotide and 2 pyruvate molecules that move on to the next stage – the Krebs cycle. Glycolysis takes place in the cytoplasm of normal body cells, or the sarcoplasm of muscle cells.

  6. Bioenergetics - Wikipedia

    en.wikipedia.org/wiki/Bioenergetics

    Bioenergetics is a field in biochemistry and cell biology that concerns energy flow through living systems. [1] This is an active area of biological research that includes the study of the transformation of energy in living organisms and the study of thousands of different cellular processes such as cellular respiration and the many other metabolic and enzymatic processes that lead to ...

  7. Active transport - Wikipedia

    en.wikipedia.org/wiki/Active_transport

    These proteins have receptors that bind to specific molecules (e.g., glucose) and transport them across the cell membrane. Because energy is required in this process, it is known as 'active' transport. Examples of active transport include the transportation of sodium out of the cell and potassium into the cell by the sodium-potassium pump.

  8. Electron transport chain - Wikipedia

    en.wikipedia.org/wiki/Electron_transport_chain

    An electron transport chain (ETC [1]) is a series of protein complexes and other molecules which transfer electrons from electron donors to electron acceptors via redox reactions (both reduction and oxidation occurring simultaneously) and couples this electron transfer with the transfer of protons (H + ions) across a membrane.

  9. Oxidative phosphorylation - Wikipedia

    en.wikipedia.org/wiki/Oxidative_phosphorylation

    Oxidative phosphorylation is made up of two closely connected components: the electron transport chain and chemiosmosis. The electron transport chain in the cell is the site of oxidative phosphorylation. The NADH and succinate generated in the citric acid cycle are oxidized, releasing the energy of O 2 to power the ATP synthase.