enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Orthodiagonal quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Orthodiagonal_quadrilateral

    The area K of an orthodiagonal quadrilateral equals one half the product of the lengths of the diagonals p and q: [8] K = p q 2 . {\displaystyle K={\frac {pq}{2}}.} Conversely, any convex quadrilateral where the area can be calculated with this formula must be orthodiagonal. [ 6 ]

  3. Rectangle - Wikipedia

    en.wikipedia.org/wiki/Rectangle

    The isoperimetric theorem for rectangles states that among all rectangles of a given perimeter, the square has the largest area. The midpoints of the sides of any quadrilateral with perpendicular diagonals form a rectangle. A parallelogram with equal diagonals is a rectangle.

  4. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    The dual theorem states that of all quadrilaterals with a given area, the square has the shortest perimeter. The quadrilateral with given side lengths that has the maximum area is the cyclic quadrilateral. [43] Of all convex quadrilaterals with given diagonals, the orthodiagonal quadrilateral has the largest area.

  5. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    More generally, if the quadrilateral is a rectangle with sides a and b and diagonal d then Ptolemy's theorem reduces to the Pythagorean theorem. In this case the center of the circle coincides with the point of intersection of the diagonals. The product of the diagonals is then d 2, the right hand side of Ptolemy's relation is the sum a 2 + b 2.

  6. Regular polygon - Wikipedia

    en.wikipedia.org/wiki/Regular_polygon

    The diagonals divide the polygon into 1, 4, 11, 24, ... pieces. [ a ] For a regular n -gon inscribed in a circle of radius 1 {\displaystyle 1} , the product of the distances from a given vertex to all other vertices (including adjacent vertices and vertices connected by a diagonal) equals n .

  7. Area - Wikipedia

    en.wikipedia.org/wiki/Area

    Given a rectangle with length l and width w, the formula for the area is: [2] A = lw (rectangle). That is, the area of the rectangle is the length multiplied by the width. As a special case, as l = w in the case of a square, the area of a square with side length s is given by the formula: [1] [2] A = s 2 (square). The formula for the area of a ...

  8. List of second moments of area - Wikipedia

    en.wikipedia.org/wiki/List_of_second_moments_of_area

    The parallel axis theorem can be used to determine the second moment of area of a rigid body about any axis, given the body's second moment of area about a parallel axis through the body's centroid, the area of the cross section, and the perpendicular distance (d) between the axes. ′ = +

  9. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...