enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    A more general proof shows that the mth root of an integer N is irrational, unless N is the mth power of an integer n. [7] That is, it is impossible to express the mth root of an integer N as the ratio a ⁄ b of two integers a and b, that share no common prime factor, except in cases in which b = 1.

  3. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    convergence of the geometric series with first term 1 and ratio 1/2; Integer partition; Irrational number. irrationality of log 2 3; irrationality of the square root of 2; Mathematical induction. sum identity; Power rule. differential of x n; Product and Quotient Rules; Derivation of Product and Quotient rules for differentiating. Prime number

  4. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Perhaps the numbers most easy to prove irrational are certain logarithms. Here is a proof by contradiction that log 2 3 is irrational (log 2 3 ≈ 1.58 > 0). Assume log 2 3 is rational. For some positive integers m and n, we have ⁡ =. It follows that / =

  5. Square root of 7 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_7

    The rectangle that bounds an equilateral triangle of side 2, or a regular hexagon of side 1, has size square root of 3 by square root of 4, with a diagonal of square root of 7. A Logarex system Darmstadt slide rule with 7 and 6 on A and B scales, and square roots of 6 and of 7 on C and D scales, which can be read as slightly less than 2.45 and ...

  6. 10 Hard Math Problems That Even the Smartest People in the ...

    www.aol.com/10-hard-math-problems-even-150000090...

    For example, if s=2, then 𝜁(s) is the well-known series 1 + 1/4 + 1/9 + 1/16 + …, which strangely adds up to exactly 𝜋²/6. When s is a complex number—one that looks like a+b𝑖, using ...

  7. Transcendental number theory - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number_theory

    ω(x, 1) is often called the measure of irrationality of a real number x. For rational numbers, ω(x, 1) = 0 and is at least 1 for irrational real numbers. A Liouville number is defined to have infinite measure of irrationality. Roth's theorem says that irrational real algebraic numbers have measure of irrationality 1.

  8. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0. The golden ratio (denoted or ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − x − 1 = 0.

  9. Geometrical properties of polynomial roots - Wikipedia

    en.wikipedia.org/wiki/Geometrical_properties_of...

    If it is not the case, zero is a root, and the localization of the other roots may be studied by dividing the polynomial by a power of the indeterminate, getting a polynomial with a nonzero constant term. For k = 0 and k = n, Descartes' rule of signs shows that the polynomial has exactly one positive real root.