Search results
Results from the WOW.Com Content Network
The rectangle that bounds an equilateral triangle of side 2, or a regular hexagon of side 1, has size square root of 3 by square root of 4, with a diagonal of square root of 7. A Logarex system Darmstadt slide rule with 7 and 6 on A and B scales, and square roots of 6 and of 7 on C and D scales, which can be read as slightly less than 2.45 and ...
Among irrational numbers are the ratio π of a circle's circumference to its diameter, Euler's number e, the golden ratio φ, and the square root of two. [1] In fact, all square roots of natural numbers, other than of perfect squares, are irrational. [2]
Rational numbers have irrationality exponent 1, while (as a consequence of Dirichlet's approximation theorem) every irrational number has irrationality exponent at least 2. On the other hand, an application of Borel-Cantelli lemma shows that almost all numbers, including all algebraic irrational numbers , have an irrationality exponent exactly ...
A more general proof shows that the mth root of an integer N is irrational, unless N is the mth power of an integer n. [7] That is, it is impossible to express the mth root of an integer N as the ratio a ⁄ b of two integers a and b, that share no common prime factor, except in cases in which b = 1.
The following 1953 proof by Dov Jarden has been widely used as an example of a non-constructive proof since at least 1970: [4] [5] CURIOSA 339. A Simple Proof That a Power of an Irrational Number to an Irrational Exponent May Be Rational. is either rational or irrational. If it is rational, our statement is proved.
The four 4th roots of −1, none of which are real The three 3rd roots of −1, one of which is a negative real. An n th root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose nth power is x:
Let a be an integer that is not a square number and not −1. Write a = a 0 b 2 with a 0 square-free. Denote by S(a) the set of prime numbers p such that a is a primitive root modulo p. Then the conjecture states S(a) has a positive asymptotic density inside the set of primes. In particular, S(a) is infinite.
The square root of the Gelfond–Schneider constant is the transcendental number = 1.632 526 919 438 152 844 77.... This same constant can be used to prove that "an irrational elevated to an irrational power may be rational", even without first proving its transcendence.