enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Proof of impossibility - Wikipedia

    en.wikipedia.org/wiki/Proof_of_impossibility

    A more general proof shows that the mth root of an integer N is irrational, unless N is the mth power of an integer n. [7] That is, it is impossible to express the mth root of an integer N as the ratio a ⁄ b of two integers a and b, that share no common prime factor, except in cases in which b = 1.

  3. Square root of 7 - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_7

    The rectangle that bounds an equilateral triangle of side 2, or a regular hexagon of side 1, has size square root of 3 by square root of 4, with a diagonal of square root of 7. A Logarex system Darmstadt slide rule with 7 and 6 on A and B scales, and square roots of 6 and of 7 on C and D scales, which can be read as slightly less than 2.45 and ...

  4. Irrational number - Wikipedia

    en.wikipedia.org/wiki/Irrational_number

    Here is a proof by contradiction that log 2 3 is irrational (log 2 3 ≈ 1.58 > 0). Assume log 2 3 is rational. For some positive integers m and n , we have

  5. List of mathematical proofs - Wikipedia

    en.wikipedia.org/wiki/List_of_mathematical_proofs

    convergence of the geometric series with first term 1 and ratio 1/2; Integer partition; Irrational number. irrationality of log 2 3; irrationality of the square root of 2; Mathematical induction. sum identity; Power rule. differential of x n; Product and Quotient Rules; Derivation of Product and Quotient rules for differentiating. Prime number

  6. Transcendental number - Wikipedia

    en.wikipedia.org/wiki/Transcendental_number

    For example, the square root of 2 is an irrational number, but it is not a transcendental number as it is a root of the polynomial equation x 2 − 2 = 0. The golden ratio (denoted or ) is another irrational number that is not transcendental, as it is a root of the polynomial equation x 2 − x − 1 = 0.

  7. Gelfond–Schneider constant - Wikipedia

    en.wikipedia.org/wiki/Gelfond–Schneider_constant

    The square root of the Gelfond–Schneider constant is the transcendental number = 1.632 526 919 438 152 844 77.... This same constant can be used to prove that "an irrational elevated to an irrational power may be rational", even without first proving its transcendence.

  8. Algebraic number - Wikipedia

    en.wikipedia.org/wiki/Algebraic_number

    The square root of 2 is an algebraic number equal to the length of the hypotenuse of a right triangle with legs of length 1. An algebraic number is a number that is a root of a non-zero polynomial in one variable with integer (or, equivalently, rational ) coefficients.

  9. nth root - Wikipedia

    en.wikipedia.org/wiki/Nth_root

    The four 4th roots of −1, none of which are real The three 3rd roots of −1, one of which is a negative real. An n th root of a number x, where n is a positive integer, is any of the n real or complex numbers r whose nth power is x: