Search results
Results from the WOW.Com Content Network
Myelinogenesis thus encompasses the process of transition between phases 3 and 4. [6] Upon initiation of myelinogenesis, each pioneer process forms lamellar extensions which extend and elaborate circumferentially around the target axon. This forms the first turn of the myelin sheath. [7]
Myelin (/ ˈ m aɪ. ə l ɪ n / MY-ə-lin) is a lipid-rich material that surrounds nerve cell axons to insulate them and increase the rate at which electrical impulses (called action potentials) pass along the axon. [1] [2] The myelinated axon can be likened to an electrical wire (the axon) with insulating material (myelin) around it. However ...
MAG is believed to be involved in myelination during nerve regeneration in the PNS [6] and is vital for the long-term survival of the myelinated axons following myelinogenesis. [7] In the CNS MAG is one of three main myelin-associated inhibitors of axonal regeneration after injury, [ 8 ] making it an important protein for future research on ...
The decreased axon size reflects a higher packing density of neurofilaments in this region, which are less heavily phosphorylated and are transported more slowly. [6] Vesicles and other organelles are also increased at the nodes, which suggest that there is a bottleneck of axonal transport in both directions as well as local axonal-glial signaling.
Oligodendrocytes are a type of glial cell, non-neuronal cells in the central nervous system.They arise during development from oligodendrocyte precursor cells (OPCs), [8] which can be identified by their expression of a number of antigens, including the ganglioside GD3, [9] [10] [11] the NG2 chondroitin sulfate proteoglycan, and the platelet-derived growth factor-alpha receptor subunit (PDGF ...
Fig. 1. Neuron and myelinated axon, with signal flow from inputs at dendrites to outputs at axon terminals. The signal is a short electrical pulse called action potential or 'spike'. Fig 2. Time course of neuronal action potential ("spike"). Note that the amplitude and the exact shape of the action potential can vary according to the exact ...
Like other neurons, α-MNs transmit signals as action potentials, rapid changes in electrical activity that propagate from the cell body to the end of the axon. To increase the speed at which action potentials travel, α-MN axons have large diameters and are heavily myelinated by both oligodendrocytes and Schwann cells .
Axon guidance (also called axon pathfinding) is a subfield of neural development concerning the process by which neurons send out axons to reach their correct targets. Axons often follow very precise paths in the nervous system, and how they manage to find their way so accurately is an area of ongoing research.