Search results
Results from the WOW.Com Content Network
There are efforts for intercomparison of radiation codes. One such project was ICRCCM (Intercomparison of Radiation Codes in Climate Models) effort that spanned the late 1980s – early 2000s. The more current (2011) project, Continual Intercomparison of Radiation Codes, emphasises also using observations to define intercomparison cases. [2]
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of ...
These models predict the effect of perturbations caused by the Earth’s shape, drag, radiation, and gravitation effects from other bodies such as the sun and moon. [1] [2] Simplified General Perturbations (SGP) models apply to near earth objects with an orbital period of less than 225 minutes. Simplified Deep Space Perturbations (SDP) models ...
In spectroscopy and radiometry, vector radiative transfer (VRT) is a method of modelling the propagation of polarized electromagnetic radiation in low density media. In contrast to scalar radiative transfer (RT), which models only the first Stokes component, the intensity, VRT models all four components through vector methods.
The 4th radiation transfer model intercomparison (RAMI-IV): Proficiency testing of canopy reflectance models with ISO-13528, 2013, Widlowski J-L, B Pinty, M Lopatka, C Atzberger, D Buzica, M Chelle, M Disney, J-P Gastellu-Etchegorry, M Gerboles, N Gobron, E Grau, H Huang, A Kallel, H Kobayashi, P E Lewis, W Qin, M Schlerf, J Stuckens, D Xie ...
For example, Schwarzschild spacetime contains an event horizon and so can be associated a temperature. In the case of Schwarzschild spacetime this is the temperature T {\displaystyle T} of a black hole of mass M {\displaystyle M} , satisfying T ∝ M − 1 {\displaystyle T\propto M^{-1}} (see also Hawking radiation ).
Modeling photon propagation with Monte Carlo methods is a flexible yet rigorous approach to simulate photon transport. In the method, local rules of photon transport are expressed as probability distributions which describe the step size of photon movement between sites of photon-matter interaction and the angles of deflection in a photon's trajectory when a scattering event occurs.
Atmospheric ducting is a mode of propagation of electromagnetic radiation, usually in the lower layers of Earth’s atmosphere, where the waves are bent by atmospheric refraction. [2] In over-the-horizon radar , ducting causes part of the radiated and target-reflection energy of a radar system to be guided over distances far greater than the ...