Search results
Results from the WOW.Com Content Network
The five components of the climate system all interact. They are the atmosphere, the hydrosphere, the cryosphere, the lithosphere and the biosphere. [1]: 1451 Earth's climate system is a complex system with five interacting components: the atmosphere (air), the hydrosphere (water), the cryosphere (ice and permafrost), the lithosphere (earth's upper rocky layer) and the biosphere (living things).
Diagram showing climatic zone corresponding with those suggested by Aristotle. The climes (singular clime; also clima, plural climata, from Greek κλίμα klima, plural κλίματα klimata, meaning "inclination" or "slope" [1]) in classical Greco-Roman geography and astronomy were the divisions of the inhabited portion of the spherical Earth by geographic latitude.
In a broader sense, climate is the state of the components of the climate system, including the atmosphere, hydrosphere, cryosphere, lithosphere and biosphere and the interactions between them. [1] The climate of a location is affected by its latitude, longitude, terrain, altitude, land use and nearby water bodies and their currents. [3]
The Köppen climate classification system was modified further within the Trewartha climate classification system in 1966 (revised in 1980). The Trewartha system sought to create a more refined middle latitude climate zone, which was one of the criticisms of the Köppen system (the climate group C was too general). [10]: 200–1
The Trewartha climate classification (TCC) or the Köppen–Trewartha climate classification (KTC) is a climate classification system first published by American geographer Glenn Thomas Trewartha in 1966. It is a modified version of the Köppen–Geiger system, created to answer some of its deficiencies. [26]
Climate change occurs when changes of Earth's climate system result in new weather patterns that remain for an extended period of time. This duration of time can be as brief as a few decades to as long as millions of years. The climate system receives nearly all of its energy from the sun. The climate system also gives off energy to outer space.
Climate models divide the planet into a 3-dimensional grid and apply differential equations to each grid. The equations are based on the basic laws of physics, fluid motion, and chemistry. Numerical climate models (or climate system models) are mathematical models that can simulate the interactions of important drivers of climate.
In climate science, a tipping point is a critical threshold that, when crossed, leads to large, accelerating and often irreversible changes in the climate system. [3] If tipping points are crossed, they are likely to have severe impacts on human society and may accelerate global warming.