enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degenerate matter - Wikipedia

    en.wikipedia.org/wiki/Degenerate_matter

    While degeneracy pressure usually dominates at extremely high densities, it is the ratio between degenerate pressure and thermal pressure which determines degeneracy. Given a sufficiently drastic increase in temperature (such as during a red giant star's helium flash ), matter can become non-degenerate without reducing its density.

  3. Fermi gas - Wikipedia

    en.wikipedia.org/wiki/Fermi_gas

    Using the Fermi gas as a model, it is possible to calculate the Chandrasekhar limit, i.e. the maximum mass any star may acquire (without significant thermally generated pressure) before collapsing into a black hole or a neutron star. The latter, is a star mainly composed of neutrons, where the collapse is also avoided by neutron degeneracy ...

  4. Nuclear pasta - Wikipedia

    en.wikipedia.org/wiki/Nuclear_pasta

    Rather, the intense gravitational attraction of the compact mass overcomes the electron degeneracy pressure and causes electron capture to occur within the star. The result is a compact ball of nearly pure neutron matter with sparse protons and electrons interspersed, filling a space several thousand times smaller than the progenitor star. [4]

  5. Neutronium - Wikipedia

    en.wikipedia.org/wiki/Neutronium

    Cross-section of neutron star. Here, the core has neutrons or neutron-degenerate matter and quark matter.. Neutronium is used in popular physics literature [1] [2] to refer to the material present in the cores of neutron stars (stars which are too massive to be supported by electron degeneracy pressure and which collapse into a denser phase of matter).

  6. Chandrasekhar limit - Wikipedia

    en.wikipedia.org/wiki/Chandrasekhar_limit

    With sufficient compression, electrons are forced into nuclei in the process of electron capture, relieving the pressure. In the nonrelativistic case, electron degeneracy pressure gives rise to an equation of state of the form P = K 1 ρ 5/3, where P is the pressure, ρ is the mass density, and K 1 is a constant.

  7. Electron degeneracy pressure - Wikipedia

    en.wikipedia.org/wiki/Electron_degeneracy_pressure

    This is the pressure that prevents a white dwarf star from collapsing. A star exceeding this limit and without significant thermally generated pressure will continue to collapse to form either a neutron star or black hole, because the degeneracy pressure provided by the electrons is weaker than the inward pull of gravity.

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Gravitational collapse - Wikipedia

    en.wikipedia.org/wiki/Gravitational_collapse

    Neutron stars are expected to have a skin or "atmosphere" of normal matter on the order of a millimeter thick, underneath which they are composed almost entirely of closely packed neutrons called neutron matter [5] with a slight dusting of free electrons and protons mixed in. This degenerate neutron matter has a density of about 6.65 × 10 17 ...