Search results
Results from the WOW.Com Content Network
There is a considerable body of programming idioms for lambda calculus. Many of these were originally developed in the context of using lambda calculus as a foundation for programming language semantics, effectively using lambda calculus as a low-level programming language. Because several programming languages include the lambda calculus (or ...
Dirichlet lambda function, λ(s) = (1 – 2 −s)ζ(s) where ζ is the Riemann zeta function; Liouville function, λ(n) = (–1) Ω(n) Von Mangoldt function, Λ(n) = log p if n is a positive power of the prime p; Modular lambda function, λ(τ), a highly symmetric holomorphic function on the complex upper half-plane
In this case particular lambda terms (which define functions) are considered as values. "Running" (beta reducing) the fixed-point combinator on the encoding gives a lambda term for the result which may then be interpreted as fixed-point value. Alternately, a function may be considered as a lambda term defined purely in lambda calculus.
Higher-order programming is a style of computer programming that uses software components, like functions, modules or objects, as values. It is usually instantiated with, or borrowed from, models of computation such as lambda calculus which make heavy use of higher-order functions. A programming language can be considered higher-order if ...
Meta-functions will be given that describe the conversion between lambda and let expressions. A meta-function is a function that takes a program as a parameter. The program is data for the meta-program. The program and the meta program are at different meta-levels. The following conventions will be used to distinguish program from the meta program,
The purpose of β-reduction is to calculate a value. A value in lambda calculus is a function. So β-reduction continues until the expression looks like a function abstraction. A lambda expression that cannot be reduced further, by either β-redex, or η-redex is in normal form. Note that alpha-conversion may convert functions.
In mathematical logic, the de Bruijn index is a tool invented by the Dutch mathematician Nicolaas Govert de Bruijn for representing terms of lambda calculus without naming the bound variables. [1] Terms written using these indices are invariant with respect to α-conversion, so the check for α-equivalence is the same as that for syntactic ...
Although Goodman and Kruskal's lambda is a simple way to assess the association between variables, it yields a value of 0 (no association) whenever two variables are in accord—that is, when the modal category is the same for all values of the independent variable, even if the modal frequencies or percentages vary. As an example, consider the ...