Search results
Results from the WOW.Com Content Network
Manual segmentation ITK-SNAP provides tools for manual delineation of anatomical structures in images. Labeling can take place in all three orthogonal cut planes and results can be visualized as a three-dimensional rendering. This makes it easier to ensure that the segmentation maintains reasonable shape in 3D. Automatic segmentation
Manual image annotation is the process of manually defining regions in an image and creating a textual description of those regions. Such annotations can for instance be used to train machine learning algorithms for computer vision applications. This is a list of computer software which can be used for manual annotation of images.
More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain characteristics. The result of image segmentation is a set of segments that collectively cover the entire image, or a set of contours extracted from the image (see edge detection).
GrowCut is an interactive segmentation algorithm. It uses Cellular Automaton as an image model. Automata evolution models segmentation process. Each cell of the automata has some label (in case of binary segmentation - 'object', 'background' and 'empty'). During automata evolution some cells capture their neighbours, replacing their labels.
ITK is an open-source software toolkit for performing registration and segmentation. Segmentation is the process of identifying and classifying data found in a digitally sampled representation. Typically the sampled representation is an image acquired from such medical instrumentation as CT or MRI scanners. Registration is the task of aligning ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us
Computer Vision Annotation Tool (CVAT) is an open source, web-based image and video annotation tool used for labeling data for computer vision algorithms. Originally developed by Intel, CVAT is designed for use by a professional data annotation team, with a user interface optimized for computer vision annotation tasks.
VoTT (Visual Object Tagging Tool) is a free and open source Electron app for image annotation and labeling developed by Microsoft. [1] The software is written in the TypeScript programming language and used for building end-to-end object detection models from image and videos assets for computer vision algorithms.