Search results
Results from the WOW.Com Content Network
A concave mirror, or converging mirror, has a reflecting surface that is recessed inward (away from the incident light). Concave mirrors reflect light inward to one focal point. They are used to focus light. Unlike convex mirrors, concave mirrors show different image types depending on the distance between the object and the mirror.
In July 2000, Falco and Hockney published "Optical Insights into Renaissance Art" in Optics & Photonics News, vol. 11, a detailed analysis of the likely use of concave mirrors in certain Renaissance paintings, particularly the Lotto painting. Experiments with a concave mirror (which technically is also a lens) of the calculated properties ...
Real images can be produced by concave mirrors and converging lenses, only if the object is placed further away from the mirror/lens than the focal point, and this real image is inverted. As the object approaches the focal point the image approaches infinity, and when the object passes the focal point the image becomes virtual and is not ...
The image in a plane mirror is not magnified (that is, the image is the same size as the object) and appears to be as far behind the mirror as the object is in front of the mirror. A diverging lens (one that is thicker at the edges than the middle) or a concave mirror forms a virtual image. Such an image is reduced in size when compared to the ...
The lens is moved until a sharp image is formed on the screen. In this case 1 / u is negligible, and the focal length is then given by . Determining the focal length of a concave lens is somewhat more difficult. The focal length of such a lens is defined as the point at which the spreading beams of light meet when they are extended ...
A convex secondary mirror is placed just to the side of the light entering the telescope, and positioned afocally so as to send parallel light on to the tertiary. The concave tertiary mirror is positioned exactly twice as far to the side of the entering beam as was the convex secondary, and its own radius of curvature distant from the secondary.
Most lenses are spherical lenses: their two surfaces are parts of the surfaces of spheres. Each surface can be convex (bulging outwards from the lens), concave (depressed into the lens), or planar (flat). The line joining the centres of the spheres making up the lens surfaces is called the axis of the lens. Typically the lens axis passes ...
One early attempt to address the lack of a good "fast" lens for portraiture, and the subject of the first US patent for photographic apparatus, was Alexander S. Wolcott's camera, which used a concave mirror instead of a lens and operated on the principle of the reflecting telescope.