Search results
Results from the WOW.Com Content Network
Most recombination occurs naturally and can be classified into two types: (1) interchromosomal recombination, occurring through independent assortment of alleles whose loci are on different but homologous chromosomes (random orientation of pairs of homologous chromosomes in meiosis I); & (2) intrachromosomal recombination, occurring through ...
NCO recombinants are thought to occur primarily by the Synthesis Dependent Strand Annealing (SDSA) model, illustrated on the left, above. Most recombination events appear to be the SDSA type. Meiotic recombination may be initiated by double-stranded breaks that are introduced into the DNA by exposure to DNA damaging agents, [9] or the Spo11 ...
Following recombination, chromosome segregation occurs as indicated by the stages metaphase I and anaphase I in the meiosis diagram. Different pairs of chromosomes segregate independently of each other, a process termed “independent assortment of non-homologous chromosomes” .
Crossover in evolutionary algorithms and evolutionary computation, also called recombination, is a genetic operator used to combine the genetic information of two parents to generate new offspring. It is one way to stochastically generate new solutions from an existing population, and is analogous to the crossover that happens during sexual ...
Independent assortment occurs in eukaryotic organisms during meiotic metaphase I, and produces a gamete with a mixture of the organism's chromosomes. The physical basis of the independent assortment of chromosomes is the random orientation of each bivalent chromosome along the metaphase plate with respect to the other bivalent chromosomes.
DNA synthesis occurs in all eukaryotes and prokaryotes, as well as some viruses. The accurate synthesis of DNA is important in order to avoid mutations to DNA. In humans, mutations could lead to diseases such as cancer so DNA synthesis, and the machinery involved in vivo, has been studied extensively throughout the decades. In the future these ...
Gene conversion is the process by which one DNA sequence replaces a homologous sequence such that the sequences become identical after the conversion. [1] Gene conversion can be either allelic, meaning that one allele of the same gene replaces another allele, or ectopic, meaning that one paralogous DNA sequence converts another.
Homologous recombination that occurs during DNA repair tends to result in non-crossover products, in effect restoring the damaged DNA molecule as it existed before the double-strand break. Homologous recombination is conserved across all three domains of life as well as DNA and RNA viruses , suggesting that it is a nearly universal biological ...