Search results
Results from the WOW.Com Content Network
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
Fluid balance is an aspect of the homeostasis of organisms in which the amount of water in the organism needs to be controlled, via osmoregulation and behavior, such that the concentrations of electrolytes (salts in solution) in the various body fluids are kept within healthy ranges.
In biology, homeostasis (British also homoeostasis; / h ɒ m i oʊ ˈ s t eɪ s ɪ s,-m i ə-/) is the state of steady internal physical and chemical conditions maintained by living systems. [1] This is the condition of optimal functioning for the organism and includes many variables, such as body temperature and fluid balance , being kept ...
Osmoregulation is the homeostasis mechanism of an organism to reach balance in osmotic pressure. Hypertonicity is the presence of a solution that causes cells to shrink. Hypotonicity is the presence of a solution that causes cells to swell. Isotonicity is the presence of a solution that produces no change in cell volume.
The contractile vacuole is predominant in species that do not have a cell wall, but there are exceptions (notably Chlamydomonas) which do possess a cell wall. Through evolution , the contractile vacuole has typically been lost in multicellular organisms, but it still exists in the unicellular stage of several multicellular fungi , as well as in ...
Being able to regulate our body functions can enable a freer and more independent life, scientists say.
Osmolytes are low-molecular-weight organic compounds that influence the properties of biological fluids. Osmolytes are a class of organic molecules that play a significant role in regulating osmotic pressure and maintaining cellular homeostasis in various organisms, particularly in response to environmental stressors. [1]
SPOILERS BELOW—do not scroll any further if you don't want the answer revealed. The New York Times. Today's Wordle Answer for #1275 on Sunday, December 15, 2024.