Search results
Results from the WOW.Com Content Network
Plot of the Chebyshev polynomial of the first kind () with = in the complex plane from -2-2i to 2+2i with colors created with Mathematica 13.1 function ComplexPlot3D. The Chebyshev polynomials are two sequences of polynomials related to the cosine and sine functions, notated as () and ().
The Chebyshev nodes of the second kind, also called the Chebyshev extrema, are the extrema of the Chebyshev polynomials of the first kind, which are also the zeros of the Chebyshev polynomials of the second kind. Both of these sets of numbers are commonly referred to as Chebyshev nodes in literature. [1]
In numerical analysis Chebyshev–Gauss quadrature is an extension of Gaussian quadrature method for approximating the value of integrals of the following kind: ∫ − 1 + 1 f ( x ) 1 − x 2 d x {\displaystyle \int _{-1}^{+1}{\frac {f(x)}{\sqrt {1-x^{2}}}}\,dx}
The mathematical basis of Chebfun is numerical algorithms involving piecewise polynomial interpolants and Chebyshev polynomials, and this is where the name "Cheb" comes from. The package aims to combine the feel of symbolic computing systems like Maple and Mathematica with the speed of floating-point numerics.
Like the Chebyshev polynomials, it is named after Pafnuty Chebyshev. The two most common types of discrete Chebyshev transforms use the grid of Chebyshev zeros, the zeros of the Chebyshev polynomials of the first kind () and the grid of Chebyshev extrema, the extrema of the Chebyshev polynomials of the first kind, which are also the zeros of ...
Chebyshev's equation is the second order ... that function is a polynomial of degree p and it is proportional to the Chebyshev polynomial of the first kind ...
A typical example of a Chebyshev space is the subspace of Chebyshev polynomials of order n in the space of real continuous functions on an interval, C[a, b]. The polynomial of best approximation within a given subspace is defined to be the one that minimizes the maximum absolute difference between the polynomial and the function.
In mathematics, discrete Chebyshev polynomials, or Gram polynomials, are a type of discrete orthogonal polynomials used in approximation theory, introduced by Pafnuty Chebyshev [1] and rediscovered by Gram. [2] They were later found to be applicable to various algebraic properties of spin angular momentum.