Search results
Results from the WOW.Com Content Network
Hydrofluoric acid is a solution of hydrogen fluoride (HF) in water. Solutions of HF are colorless, acidic and highly corrosive . A common concentration is 49% (48-52%) but there are also stronger solutions (e.g. 70%) and pure HF has a boiling point near room temperature.
In acid catalysis and base catalysis, a chemical reaction is catalyzed by an acid or a base. By Brønsted–Lowry acid–base theory, the acid is the proton (hydrogen ion, H +) donor and the base is the proton acceptor. Typical reactions catalyzed by proton transfer are esterifications and aldol reactions.
Reaction centers are present in all green plants, algae, and many bacteria. A variety in light-harvesting complexes exist across the photosynthetic species. Green plants and algae have two different types of reaction centers that are part of larger supercomplexes known as P700 in Photosystem I and P680 in Photosystem II.
Light-dependent reactions of photosynthesis at the thylakoid membrane. Light-dependent reactions are certain photochemical reactions involved in photosynthesis, the main process by which plants acquire energy. There are two light dependent reactions: the first occurs at photosystem II (PSII) and the second occurs at photosystem I (PSI).
Like water and ammonia, liquid hydrogen fluoride supports an acid–base chemistry. Using a solvent system definition of acidity and basicity, nitric acid functions as a base when it is added to liquid HF. [70] However, hydrogen fluoride is cosmically rare, unlike water, ammonia, and methane. [71]
The photosynthetic efficiency is the fraction of light energy converted into chemical energy during photosynthesis in green plants and algae. Photosynthesis can be described by the simplified chemical reaction 6 H 2 O + 6 CO 2 + energy → C 6 H 12 O 6 + 6 O 2
It is a mixture of a buffering agent, such as ammonium fluoride NH 4 F, and hydrofluoric acid (HF). Its primary use is in etching thin films of silicon nitride (Si 3 N 4) or silicon dioxide (SiO 2), by the reaction: SiO 2 + 4HF + 2NH 4 F → (NH 4) 2 SiF 6 + 2H 2 O
Photosynthesis occurs in two stages. In the first stage, light-dependent reactions or light reactions capture the energy of light and use it to make the hydrogen carrier NADPH and the energy-storage molecule ATP. During the second stage, the light-independent reactions use these products to capture and reduce carbon dioxide.