Search results
Results from the WOW.Com Content Network
Meteorological optics is "that part of atmospheric optics concerned with the study of patterns observable with the naked eye". [2] Nevertheless, the two terms are sometimes used interchangeably. Meteorological optical phenomena, as described in this article, are concerned with how the optical properties of Earth's atmosphere cause a wide range ...
Atmospheric optical phenomena include: Afterglow; Airglow; Alexander's band, the dark region between the two bows of a double rainbow. Alpenglow; Anthelion; Anticrepuscular rays; Aurora (northern and southern lights, aurora borealis and aurora australis) Belt of Venus; Brocken Spectre; Circumhorizontal arc; Circumzenithal arc; Cloud iridescence ...
Optical phenomena encompass a broad range of events, including those caused by atmospheric optical properties, other natural occurrences, man-made effects, and interactions involving human vision (entoptic phenomena).
Atmospheric optical phenomena are often due to the interaction of light from the sun or moon with the atmosphere, clouds, water, or dust and other particulates. Subcategories This category has the following 6 subcategories, out of 6 total.
Looming of the Canadian coast as seen from Rochester, New York, on April 16, 1871. Looming is the most noticeable and most often observed of these refraction phenomena. It is an abnormally large refraction of the object that increases the apparent elevation of the distant objects and sometimes allows an observer to see objects that are located below the horizon under normal conditions.
Lunar corona A solar corona up Beinn Mhòr (South Uist). In meteorology, a corona (plural coronae) is an optical phenomenon produced by the diffraction of sunlight or moonlight (or, occasionally, bright starlight or planetlight) [1] by individual small water droplets and sometimes tiny ice crystals of a cloud or on a foggy glass surface.
Atmospheric refraction of the light from a star is zero in the zenith, less than 1′ (one arc-minute) at 45° apparent altitude, and still only 5.3′ at 10° altitude; it quickly increases as altitude decreases, reaching 9.9′ at 5° altitude, 18.4′ at 2° altitude, and 35.4′ at the horizon; [4] all values are for 10 °C and 1013.25 hPa ...
In the 1960s, Fried published a series of papers on the optical effects of atmospheric turbulence that provided much of the analytic foundations for the development of adaptive optics systems, and that resulted in the definition of the quantity now known as Fried’s parameter. In addition, his 1966 paper, "Limiting Resolution Looking Down ...