enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Current density - Wikipedia

    en.wikipedia.org/wiki/Current_density

    In electromagnetism, current density is the amount of charge per unit time that flows through a unit area of a chosen cross section. [1] The current density vector is defined as a vector whose magnitude is the electric current per cross-sectional area at a given point in space, its direction being that of the motion of the positive charges at this point.

  3. Maxwell's equations - Wikipedia

    en.wikipedia.org/wiki/Maxwell's_equations

    The net electric current I is the surface integral of the electric current density J passing through Σ: =, where dS denotes the differential vector element of surface area S, normal to surface Σ. (Vector area is sometimes denoted by A rather than S , but this conflicts with the notation for magnetic vector potential ).

  4. Mathematical descriptions of the electromagnetic field

    en.wikipedia.org/wiki/Mathematical_descriptions...

    Many times in the use and calculation of electric and magnetic fields, the approach used first computes an associated potential: the electric potential, , for the electric field, and the magnetic vector potential, A, for the magnetic field. The electric potential is a scalar field, while the magnetic potential is a vector field.

  5. List of physical quantities - Wikipedia

    en.wikipedia.org/wiki/List_of_physical_quantities

    Measure of a material's ability to conduct an electric current S/m L −3 M −1 T 3 I 2: scalar Electric potential: φ: Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar Electrical resistance: R: Electric potential per unit electric current ohm (Ω = V/A ...

  6. Electric potential - Wikipedia

    en.wikipedia.org/wiki/Electric_potential

    The electric potential at infinity is assumed to be zero. In electrodynamics, when time-varying fields are present, the electric field cannot be expressed only as a scalar potential. Instead, the electric field can be expressed as both the scalar electric potential and the magnetic vector potential. [2]

  7. Electromagnetic four-potential - Wikipedia

    en.wikipedia.org/wiki/Electromagnetic_four-potential

    As measured in a given frame of reference, and for a given gauge, the first component of the electromagnetic four-potential is conventionally taken to be the electric scalar potential, and the other three components make up the magnetic vector potential. While both the scalar and vector potential depend upon the frame, the electromagnetic four ...

  8. Magnetic vector potential - Wikipedia

    en.wikipedia.org/wiki/Magnetic_vector_potential

    The magnetic vector potential, , is a vector field, and the electric potential, , is a scalar field such that: [5] = , =, where is the magnetic field and is the electric field. In magnetostatics where there is no time-varying current or charge distribution , only the first equation is needed.

  9. Electric current - Wikipedia

    en.wikipedia.org/wiki/Electric_current

    The ampere is an SI base unit and electric current is a base quantity in the International System of Quantities (ISQ). [4]: 15 Electric current is also known as amperage and is measured using a device called an ammeter. [2]: 788 Electric currents create magnetic fields, which are used in motors, generators, inductors, and transformers.