Search results
Results from the WOW.Com Content Network
The presence of magnesium in chlorophyll was discovered in 1906, [8] and was the first detection of that element in living tissue. [9] After initial work done by German chemist Richard Willstätter spanning from 1905 to 1915, the general structure of chlorophyll a was elucidated by Hans Fischer in 1940.
It was the first virus to be discovered, and the first to be crystallised and its structure shown in detail. The first X-ray diffraction pictures of the crystallised virus were obtained by Bernal and Fankuchen in 1941. On the basis of her pictures, Rosalind Franklin discovered the full structure of the virus in 1955. [35]
Viruses are only able to replicate themselves by commandeering the reproductive apparatus of cells and making them reproduce the virus's genetic structure and particles instead. How viruses do this depends mainly on the type of nucleic acid DNA or RNA they contain, which is either one or the other but never both. Viruses cannot function or ...
In 1935, American biochemist and virologist Wendell Meredith Stanley examined the tobacco mosaic virus and found it was mostly made of protein. [19] A short time later, this virus was separated into protein and RNA parts. [20] The tobacco mosaic virus was the first to be crystallised and its structure could, therefore, be elucidated in detail.
When infected, the host cell is forced to rapidly produce thousands of copies of the original virus. [75] Their life cycle differs greatly between species, but there are six basic stages in their life cycle: [26]: 75–91 Attachment is a specific binding between viral capsid proteins and specific receptors on the host cellular surface. This ...
Virus crystallisation is the re-arrangement of viral components into solid crystal particles. [1] The crystals are composed of thousands of inactive forms of a particular virus arranged in the shape of a prism. [2] The inactive nature of virus crystals provide advantages for immunologists to effectively analyze the structure and function behind ...
The bacteriophage life cycle involves the viruses injecting their genome into bacterial cells, inserting those genes into the bacterial genome, and hijacking the bacteria's machinery to produce hundreds of new phages until the cell bursts open to release them for additional infections.
Chlorophyll a, b, and d. Chlorophyll synthase [14] completes the biosynthesis of chlorophyll a by catalysing the reaction EC 2.5.1.62. chlorophyllide a + phytyl diphosphate chlorophyll a + diphosphate. This forms an ester of the carboxylic acid group in chlorophyllide a with the 20-carbon diterpene alcohol phytol.