Search results
Results from the WOW.Com Content Network
In physics, Hooke's law is an empirical law which states that the force (F) needed to extend or compress a spring by some distance (x) scales linearly with respect to that distance—that is, F s = kx, where k is a constant factor characteristic of the spring (i.e., its stiffness), and x is small compared to the total possible deformation of the spring.
The first constitutive equation (constitutive law) was developed by Robert Hooke and is known as Hooke's law.It deals with the case of linear elastic materials.Following this discovery, this type of equation, often called a "stress-strain relation" in this example, but also called a "constitutive assumption" or an "equation of state" was commonly used.
An example is the action of a spring. An idealized spring exerts a force proportional to the amount of deformation of the spring from its equilibrium length, exerted in a direction oppose the deformation. Pulling the spring to a greater length causes it to exert a force that brings the spring back toward its equilibrium length.
This relationship is known as Hooke's law. A geometry-dependent version of the idea [a] was first formulated by Robert Hooke in 1675 as a Latin anagram, "ceiiinosssttuv". He published the answer in 1678: "Ut tensio, sic vis" meaning "As the extension, so the force", [5] [6] a linear relationship commonly referred to as Hooke's law.
The slope of the curve is Hooke's constant "k". The bottom part has schematic pictures of the spring states corresponding to some points of the plot; the arrows represent the forces that need to be applied to the left (free) end to obtain each state. The central picture represents the spring's relaxed state, when no force is applied.
For example, an invariant with respect to the group of proper orthogonal transformations, called SO(3), is a quantity that remains constant under arbitrary 3D rotations. C {\displaystyle \mathbf {C} } possesses two linear invariants and seven quadratic invariants with respect to SO(3). [ 12 ]
However, if the mass is displaced from the equilibrium position, the spring exerts a restoring elastic force that obeys Hooke's law. Mathematically, F = − k x , {\displaystyle \mathbf {F} =-k\mathbf {x} ,} where F is the restoring elastic force exerted by the spring (in SI units: N ), k is the spring constant ( N ·m −1 ), and x is the ...
For a complex anisotropic solid such as wood or paper, these three moduli do not contain enough information to describe its behaviour, and one must use the full generalized Hooke's law. The reciprocal of the bulk modulus at fixed temperature is called the isothermal compressibility .