enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_functions

    The Gudermannian function gives a direct relationship between the circular functions and the hyperbolic functions that does not involve complex numbers. The graph of the function a cosh(x/a) is the catenary, the curve formed by a uniform flexible chain, hanging freely between two fixed points under uniform gravity.

  3. Hyperbola - Wikipedia

    en.wikipedia.org/wiki/Hyperbola

    Many other mathematical objects have their origin in the hyperbola, such as hyperbolic paraboloids (saddle surfaces), hyperboloids ("wastebaskets"), hyperbolic geometry (Lobachevsky's celebrated non-Euclidean geometry), hyperbolic functions (sinh, cosh, tanh, etc.), and gyrovector spaces (a geometry proposed for use in both relativity and ...

  4. Hyperbolic partial differential equation - Wikipedia

    en.wikipedia.org/wiki/Hyperbolic_partial...

    In mathematics, a hyperbolic partial differential equation of order is a partial differential equation (PDE) that, roughly speaking, has a well-posed initial value problem for the first derivatives. [ citation needed ] More precisely, the Cauchy problem can be locally solved for arbitrary initial data along any non-characteristic hypersurface .

  5. Lax–Friedrichs method - Wikipedia

    en.wikipedia.org/wiki/Lax–Friedrichs_method

    A nonlinear hyperbolic conservation law is defined through a flux function : + (()) = In the case of f ( u ) = a u {\displaystyle f(u)=au} , we end up with a scalar linear problem. Note that in general, u {\displaystyle u} is a vector with m {\displaystyle m} equations in it.

  6. Inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/Inverse_hyperbolic_functions

    Graphs of the inverse hyperbolic functions The hyperbolic functions sinh, cosh, and tanh with respect to a unit hyperbola are analogous to circular functions sin, cos, tan with respect to a unit circle. The argument to the hyperbolic functions is a hyperbolic angle measure.

  7. Saddle point - Wikipedia

    en.wikipedia.org/wiki/Saddle_point

    A saddle point (in red) on the graph of z = x 2 − y 2 (hyperbolic paraboloid). In mathematics, a saddle point or minimax point [1] is a point on the surface of the graph of a function where the slopes (derivatives) in orthogonal directions are all zero (a critical point), but which is not a local extremum of the function. [2]

  8. Method of characteristics - Wikipedia

    en.wikipedia.org/wiki/Method_of_characteristics

    Although this is defined using a particular coordinate system, the transformation law relating the ξ i and the x i ensures that σ P is a well-defined function on the cotangent bundle. The function σ P is homogeneous of degree k in the ξ variable. The zeros of σ P, away from the zero section of T ∗ X, are the characteristics of P.

  9. Unit hyperbola - Wikipedia

    en.wikipedia.org/wiki/Unit_hyperbola

    In terms of the hyperbolic angle parameter a, the unit hyperbola consists of points (⁡ + ⁡), where j = (0,1). The right branch of the unit hyperbola corresponds to the positive coefficient. In fact, this branch is the image of the exponential map acting on the j-axis.