enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Great-circle distance - Wikipedia

    en.wikipedia.org/wiki/Great-circle_distance

    A diagram illustrating great-circle distance (drawn in red) between two points on a sphere, P and Q. Two antipodal points, u and v are also shown. The great-circle distance, orthodromic distance, or spherical distance is the distance between two points on a sphere, measured along the great-circle arc between them. This arc is the shortest path ...

  3. Spherical coordinate system - Wikipedia

    en.wikipedia.org/wiki/Spherical_coordinate_system

    Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle ) is called the reference plane (sometimes fundamental plane ).

  4. Spherical circle - Wikipedia

    en.wikipedia.org/wiki/Spherical_circle

    A circle with non-zero geodesic curvature is called a small circle, and is analogous to a circle in the plane. A small circle separates the sphere into two spherical disks or spherical caps, each with the circle as its boundary. For any triple of distinct non-antipodal points a unique small circle passes through all three.

  5. Haversine formula - Wikipedia

    en.wikipedia.org/wiki/Haversine_formula

    d is the distance between the two points along a great circle of the sphere (see spherical distance), r is the radius of the sphere. The haversine formula allows the haversine of θ to be computed directly from the latitude (represented by φ) and longitude (represented by λ) of the two points:

  6. Vincenty's formulae - Wikipedia

    en.wikipedia.org/wiki/Vincenty's_formulae

    Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...

  7. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    Spherical trigonometry is the branch of spherical geometry that deals with the metrical relationships between the sides and angles of spherical triangles, traditionally expressed using trigonometric functions. On the sphere, geodesics are great circles. Spherical trigonometry is of great importance for calculations in astronomy, geodesy, and ...

  8. Great-circle navigation - Wikipedia

    en.wikipedia.org/wiki/Great-circle_navigation

    For example, to find the midpoint of the path, substitute σ = 1 ⁄ 2 (σ 01 + σ 02); alternatively to find the point a distance d from the starting point, take σ = σ 01 + d/R. Likewise, the vertex, the point on the great circle with greatest latitude, is found by substituting σ = + 1 ⁄ 2 π. It may be convenient to parameterize the ...

  9. Spherical geometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_geometry

    In spherical geometry, the basic concepts are point and great circle. However, two great circles on a plane intersect in two antipodal points, unlike coplanar lines in Elliptic geometry. In the extrinsic 3-dimensional picture, a great circle is the intersection of the sphere with any plane through the center.