enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Whitehead theorem - Wikipedia

    en.wikipedia.org/wiki/Whitehead_theorem

    The Whitehead theorem states that a weak homotopy equivalence from one CW complex to another is a homotopy equivalence. (That is, the map f: X → Y has a homotopy inverse g: Y → X, which is not at all clear from the assumptions.) This implies the same conclusion for spaces X and Y that are homotopy equivalent to CW complexes.

  3. CW complex - Wikipedia

    en.wikipedia.org/wiki/CW_complex

    CW complexes satisfy the Whitehead theorem: a map between CW complexes is a homotopy equivalence if and only if it induces an isomorphism on all homotopy groups. A covering space of a CW complex is also a CW complex.

  4. Homotopy theory - Wikipedia

    en.wikipedia.org/wiki/Homotopy_theory

    Remarkably, Whitehead's theorem says that for CW complexes, a weak homotopy equivalence and a homotopy equivalence are the same thing. Another important result is the approximation theorem. First, the homotopy category of spaces is the category where an object is a space but a morphism is the homotopy class of a map. Then

  5. Weak equivalence (homotopy theory) - Wikipedia

    en.wikipedia.org/wiki/Weak_equivalence_(homotopy...

    on homology is an isomorphism for all integers n. (Here H n (X) is the object of A defined as the kernel of X n → X n−1 modulo the image of X n+1 → X n.) The resulting homotopy category is called the derived category D(A).

  6. Alexander duality - Wikipedia

    en.wikipedia.org/wiki/Alexander_duality

    The prototype here is the Jordan curve theorem, which topologically concerns the complement of a circle in the Riemann sphere. It also tells the same story. We have the honest Betti numbers 1, 1, 0. of the circle, and therefore 0, 1, 1. by flipping over and 1, 1, 0. by shifting to the left.

  7. Cohomology - Wikipedia

    en.wikipedia.org/wiki/Cohomology

    From the initial idea of homology as a method of constructing algebraic invariants of topological spaces, the range of applications of homology and cohomology theories has spread throughout geometry and algebra. The terminology tends to hide the fact that cohomology, a contravariant theory, is more natural than homology in many applications.

  8. Homotopy category - Wikipedia

    en.wikipedia.org/wiki/Homotopy_category

    Results of J.H.C. Whitehead, in particular Whitehead's theorem and the existence of CW approximations, [4] give a more explicit description of the homotopy category. Namely, the homotopy category is equivalent to the full subcategory of the naive homotopy category that consists of CW complexes. In this respect, the homotopy category strips away ...

  9. List of algebraic topology topics - Wikipedia

    en.wikipedia.org/wiki/List_of_algebraic_topology...

    Simplicial approximation theorem; Abstract simplicial complex; Simplicial set; Simplicial category; Chain (algebraic topology) Betti number; Euler characteristic. Genus; Riemann–Hurwitz formula; Singular homology; Cellular homology; Relative homology; Mayer–Vietoris sequence; Excision theorem; Universal coefficient theorem; Cohomology. List ...