Search results
Results from the WOW.Com Content Network
In mathematics, a multiple is the product of any quantity and an integer. [1] In other words, for the quantities a and b, it can be said that b is a multiple of a if b = na for some integer n, which is called the multiplier. If a is not zero, this is equivalent to saying that / is an integer.
A least common multiple of a and b is a common multiple that is minimal, in the sense that for any other common multiple n of a and b, m divides n. In general, two elements in a commutative ring can have no least common multiple or more than one. However, any two least common multiples of the same pair of elements are associates. [10]
These modes include Multiples, Factors, Primes, Equalities, and Inequalities: Multiples - the objective is to find multiples of the number given. If presented with a 3, one would select numbers like 3, 6, 9, 12, etc.
In mathematics, a product is the result of multiplication, or an expression that identifies objects (numbers or variables) to be multiplied, called factors.For example, 21 is the product of 3 and 7 (the result of multiplication), and (+) is the product of and (+) (indicating that the two factors should be multiplied together).
Greatest common divisors can be computed by determining the prime factorizations of the two numbers and comparing factors. For example, to compute gcd(48, 180) , we find the prime factorizations 48 = 2 4 · 3 1 and 180 = 2 2 · 3 2 · 5 1 ; the GCD is then 2 min(4,2) · 3 min(1,2) · 5 min(0,1) = 2 2 · 3 1 · 5 0 = 12 The corresponding LCM is ...
The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10. In mathematics, a divisor of an integer , also called a factor of , is an integer that may be multiplied by some integer to produce . [1] In this case, one also says that is a multiple of .
The fundamental theorem can be derived from Book VII, propositions 30, 31 and 32, and Book IX, proposition 14 of Euclid's Elements.. If two numbers by multiplying one another make some number, and any prime number measure the product, it will also measure one of the original numbers.
Given an integer of unknown form, these methods are usually applied before general-purpose methods to remove small factors. [10] For example, naive trial division is a Category 1 algorithm. Trial division; Wheel factorization; Pollard's rho algorithm, which has two common flavors to identify group cycles: one by Floyd and one by Brent.