enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. DNA replication - Wikipedia

    en.wikipedia.org/wiki/DNA_replication

    Eukaryotes initiate DNA replication at multiple points in the chromosome, so replication forks meet and terminate at many points in the chromosome. Because eukaryotes have linear chromosomes, DNA replication is unable to reach the very end of the chromosomes. Due to this problem, DNA is lost in each replication cycle from the end of the chromosome.

  3. Eukaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Eukaryotic_DNA_replication

    During DNA replication, the replisome will unwind the parental duplex DNA into a two single-stranded DNA template replication fork in a 5' to 3' direction. The leading strand is the template strand that is being replicated in the same direction as the movement of the replication fork.

  4. Self-replication - Wikipedia

    en.wikipedia.org/wiki/Self-replication

    Self-replication is a fundamental feature of life. It was proposed that self-replication emerged in the evolution of life when a molecule similar to a double-stranded polynucleotide (possibly like RNA) dissociated into single-stranded polynucleotides and each of these acted as a template for synthesis of a complementary strand producing two double stranded copies. [4]

  5. Replication timing - Wikipedia

    en.wikipedia.org/wiki/Replication_timing

    The process of duplicating DNA is called DNA replication, and it takes place by first unwinding the duplex DNA molecule, starting at many locations called DNA replication origins, followed by an unzipping process that unwinds the DNA as it is being copied. However, replication does not start at all the different origins at once.

  6. Origin of replication - Wikipedia

    en.wikipedia.org/wiki/Origin_of_replication

    More than five decades ago, Jacob, Brenner, and Cuzin proposed the replicon hypothesis to explain the regulation of chromosomal DNA synthesis in E. coli. [18] The model postulates that a diffusible, trans-acting factor, a so-called initiator, interacts with a cis-acting DNA element, the replicator, to promote replication onset at a nearby origin.

  7. Cell cycle - Wikipedia

    en.wikipedia.org/wiki/Cell_cycle

    The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.

  8. Cell division - Wikipedia

    en.wikipedia.org/wiki/Cell_division

    At the G1/S checkpoint, p53 acts to ensure that the cell is ready for DNA replication, while at the G2/M checkpoint p53 acts to ensure that the cells have properly duplicated their content before entering mitosis. [40] Specifically, when DNA damage is present, ATM and ATR kinases are activated, activating various checkpoint kinases. [41]

  9. Prokaryotic DNA replication - Wikipedia

    en.wikipedia.org/wiki/Prokaryotic_DNA_replication

    Prokaryotic DNA Replication is the process by which a prokaryote duplicates its DNA into another copy that is passed on to daughter cells. [1] Although it is often studied in the model organism E. coli, other bacteria show many similarities. [2] Replication is bi-directional and originates at a single origin of replication (OriC). [3]