enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    This velocity is the asymptotic limiting value of the acceleration process, because the effective forces on the body balance each other more and more closely as the terminal velocity is approached. In this example, a speed of 50 % of terminal velocity is reached after only about 3 seconds, while it takes 8 seconds to reach 90 %, 15 seconds to ...

  3. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Kinematic quantities of a classical particle of mass m: position r, velocity v, acceleration a. From the instantaneous position r = r(t), instantaneous meaning at an instant value of time t, the instantaneous velocity v = v(t) and acceleration a = a(t) have the general, coordinate-independent definitions; [7]

  4. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Consequently, the acceleration is the second derivative of position, [7] often written . Position, when thought of as a displacement from an origin point, is a vector: a quantity with both magnitude and direction. [9]: 1 Velocity and acceleration are vector quantities as well. The mathematical tools of vector algebra provide the means to ...

  5. Velocity - Wikipedia

    en.wikipedia.org/wiki/Velocity

    In other words, instantaneous acceleration is defined as the derivative of velocity with respect to time: [9] =. From there, velocity is expressed as the area under an a(t) acceleration vs. time graph. As above, this is done using the concept of the integral:

  6. List of equations in classical mechanics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω) relative to F'. The situation is similar for relative ...

  7. Tsiolkovsky rocket equation - Wikipedia

    en.wikipedia.org/wiki/Tsiolkovsky_rocket_equation

    A rocket's required mass ratio as a function of effective exhaust velocity ratio. The classical rocket equation, or ideal rocket equation is a mathematical equation that describes the motion of vehicles that follow the basic principle of a rocket: a device that can apply acceleration to itself using thrust by expelling part of its mass with high velocity and can thereby move due to the ...

  8. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  9. Torricelli's equation - Wikipedia

    en.wikipedia.org/wiki/Torricelli's_equation

    In physics, Torricelli's equation, or Torricelli's formula, is an equation created by Evangelista Torricelli to find the final velocity of a moving object with constant acceleration along an axis (for example, the x axis) without having a known time interval. The equation itself is: [1] = + where