Search results
Results from the WOW.Com Content Network
A double pendulum consists of two pendulums attached end to end.. In physics and mathematics, in the area of dynamical systems, a double pendulum, also known as a chaotic pendulum, is a pendulum with another pendulum attached to its end, forming a simple physical system that exhibits rich dynamic behavior with a strong sensitivity to initial conditions. [1]
Starting the pendulum from a slightly different initial condition would result in a vastly different trajectory. The double-rod pendulum is one of the simplest dynamical systems with chaotic solutions. Chaos theory (or chaology [1]) is an interdisciplinary area of scientific study and branch of mathematics.
By comparison, based on the concept of attractor coexistence within the generalized Lorenz model [26] and the original Lorenz model ([36] [37]), Shen and his co-authors [35] [38] proposed a revised view that “weather possesses both chaos and order with distinct predictability”. The revised view, which is a build-up of the conventional view ...
A plot of Lorenz' strange attractor for values ρ=28, σ = 10, β = 8/3. The butterfly effect or sensitive dependence on initial conditions is the property of a dynamical system that, starting from any of various arbitrarily close alternative initial conditions on the attractor, the iterated points will become arbitrarily spread out from each other.
In 2017, Shijun Liao and Xiaoming Li applied a new strategy of numerical simulation for chaotic systems called the clean numerical simulation (CNS), with the use of a national supercomputer, to successfully gain 695 families of periodic solutions of the three-body system with equal mass. [37]
As a pedagogic tool, the Malkus waterwheel became a paradigmatic realization of a chaotic system, and is widely used in the teaching of chaos theory. [3] In addition to its pedagogic use, the Malkus waterwheel has been actively studied by researchers in dynamical systems and chaos. [4] [5] [6] [7]
In order to make a prediction about the system's future behavior, an analytical solution of such equations or their integration over time through computer simulation is realized. The study of dynamical systems is the focus of dynamical systems theory , which has applications to a wide variety of fields such as mathematics, physics, [ 4 ] [ 5 ...
Thus, the structure of the beam can be approximated by the kicked rotor. However, this map is interesting from a fundamental point of view in physics and mathematics because it is a very simple model of a conservative system that displays Hamiltonian chaos. It is therefore useful to study the development of chaos in this kind of system.