Search results
Results from the WOW.Com Content Network
Propeller walk (also known as propeller effect, wheeling effect, paddle wheel effect, asymmetric thrust, asymmetric blade effect, transverse thrust, prop walk) is the term for a propeller's tendency to rotate about a vertical axis (also known as yaw motion). The rotation is in addition to the forward or backward acceleration.
English inventor Francis Ronalds described what he called a propelling rudder in 1859 that combined the propulsion and steering mechanisms of a boat in a single apparatus. . The propeller was placed in a frame having an outer profile similar to a rudder and attached to a vertical shaft that allowed the device to rotate in plane while spin was transmitted to the propell
Contra-rotating propellers should not be confused with counter-rotating propellers, a term which describes propellers rotating in opposite directions but sitting apart from each other on separate shafts instead of sharing a common axis. Tandem-rotor helicopters such as the CH-47 Chinook also use a counter-rotating arrangement. The efficiency of ...
Many multiengine airplanes have a propeller synchronizer (prop sync) installed to eliminate the annoying “drumming” or “beat” of propellers whose rotation speed are close, but not precisely the same. To use prop sync, the propeller r.p.m. are coarsely matched by the pilot and the system is engaged.
In adjustable-pitch propeller control system, the pilot has to adjust the propeller pitch angle and thus angle of attack of the propeller blades (typically with a lever) to achieve the desired propeller rotational speed. The increased pitch (blade angle of attack) increases the load on the engine and therefore slows it down, and vice versa.
The watertight structure is significantly different from that of non-marine type ESCs, with a more packed air trapping enclosure. Thus arises the need to cool the motor and ESC effectively to prevent rapid failure. Most marine-grade ESCs are cooled by circulated water run by the motor, or negative propeller vacuum near the drive shaft output.
The propeller is modelled as an infinitely thin disc, inducing a constant velocity along the axis of rotation. This disc creates a flow around the propeller. Under certain mathematical premises of the fluid, there can be extracted a mathematical connection between power, radius of the propeller, torque and induced velocity.
A constant-speed propeller is a variable-pitch propeller that automatically changes its blade pitch in order to maintain a chosen rotational speed, regardless of the operational conditions of the aircraft. This is achieved by use of a constant-speed unit (CSU) or propeller governor, which automatically changes the propeller's blade pitch.